

NOAA Technical Memorandum NMFS-AFSC-7

1990 Bottom Trawl Survey of the Eastern Bering Sea Continental Shelf

by

Claire E. Armistead and Daniel G. Nichol

Alaska Fisheries Science Center 7600 Sand Point Way N.E., BIN C-15700 Seattle, WA 98115-0070

U.S. DEPARTMENT OF COMMERCE

Barbara Hackman Franklin, Secretary National Oceanic and Atmospheric Administration John A. Knauss, Administrator National Marine Fisheries Service William W. Fox, Jr., Assistant Administrator for Fisheries

January 1993

This document is available to the public through:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

ABSTRACT

The Resource Assessment and Conservation Engineering Division of the Alaska Fisheries Science Center conducts annual bottom trawl surveys to monitor the condition of the demersal fish and crab stocks of the eastern Bering Sea continental shelf. The standard study area, surveyed each year since 1979, encompasses a major portion of the eastern Bering Sea shelf between the 20-m and the 200-m isobaths and from the Alaska Peninsula north to approximately the latitude of St. Matthew Island (lat. 60° 50' N). In 1990, this area of 463,000 km² was again surveyed by two chartered trawlers, the 30.5 m <u>Alaska</u> and the 33.5 m <u>Ocean</u> Hope 3.

Demersal populations were sampled by trawling for 30 minutes at stations centered in 20 x 20 nautical mile grids covering the survey area. At each station, species composition of the catch was determined and commercially important species were sampled to obtain length distributions and age structure samples.

Survey results presented in this report include relative fishing powers of the survey vessels, abundance estimates for fish and invertebrates, geographic distributions of economically important fish species and major fish families, size composition of principal fish species, and age and growth information for selected species. Surface and bottom temperatures recorded at each sampling station are also presented.

Appendices provide detailed station data and computer listings of the analyses of abundance and biological data of the sampled populations.

CONTENTS

Introduction	••••••••••••••••••	1
Methods Survey Ar Vessels a Data Coll Data Anal Special S	ea and Sampling Design nd Fishing Gear ection ysis tudies	4 7 8 13 16
Results Environme Relative Estimated	ntal Conditions Fishing Powers of Survey Vessels Biomass of Major Fish and Invertebrate	17 17 21
Groups Relative	Abundance of Individual Fish Species	22 26
of Prin Walleye Pacific Yellowf Rock so <u>Hippoglo</u> Alaska Greenla: <u>Atherest</u> Pacific Miscella	cipal Species and Species Groups pollock cod in sole le <u>ossoides</u> spp. plaice nd turbot <u>thes</u> spp. halibut aneous Species Groups	28 29 38 47 56 65 69 73 77 81 85
Citations		91
Appendix A.	Station Data	93
Appendix B.	Schematic Diagram of Trawl Gear	102
Appendix C.	List of Species Encountered	104
Appendix D.	Rank Order of Relative Abundance of Fish and Invertebrates	113
Appendix E.	Abundance Estimates for Principal Fish Species	120
Appendix F.	Population Estimates by Sex and Size Groups for Principal Fish Species	140
Appendix G.	Age-Length Keys for Principal Fish Species	153
Appendix H.	Population Estimates by Age for Principal Fish Species	174

INTRODUCTION

The eastern Bering Sea continental shelf supports one of the most productive groundfish fisheries in the world (Bakkala 1988). Since 1970, annual commercial catches of groundfish have ranged from 1.2 to 2.2 million metric tons (t) (North Pacific Fishery Management Council 1990). Although many species are caught commercially, the most abundant has been walleye pollock (<u>Theragra chalcogramma</u>) which, since 1970, has comprised more than 70% of the total landings. The next most abundant species have been yellowfin sole (<u>Pleuronectes asper</u>) and Pacific cod (<u>Gadus macrocephalus</u>) which have comprised 8 and 5%, respectively, of the commercial landings.

Since 1971, the Resource Assessment and Conservation Engineering (RACE) Division of the Alaska Fisheries Science Center (AFSC) has conducted annual bottom trawl surveys of the eastern Bering Sea continental shelf. In 1975, the first large-scale survey of the eastern Bering Sea shelf was conducted under contract to the Bureau of Land Management in response to a need for baseline data to assess the potential impact of proposed offshore oil exploration and development on fishery resources (Pereyra et al. 1976). During this baseline survey, sampling was conducted over the Bering Sea shelf between the 20 m and 200 m isobaths and from the Alaska Peninsula north to approximately 62°N lat. (Fig. 1). Following 1975, the areal coverage of the annual surveys was reduced until 1979 when an even more comprehensive survey of the Bering Sea shelf than in 1975 was undertaken in cooperation with the Japan Fisheries Agency (Fig.

Figure 1.--Sampling stations and survey stratificationused for analyses **of** data from the 1975 baseline survey on the eastern Bering Sea shelf, with approximate locations of oil lease areas (from Pereyra et al. 1976).

Figure 2. --Sampling stations and survey stratification used for analyses of data from the 1979 expanded triennial survey on the eastern Bering Sea shelf and slope (from Bakkala and Wakabayashi 1985).

2. Bakkala and Wakabayashi 1985). The 1979 survey encompassed the entire region sampled in the 1975 baseline study, and in addition, the continental slope waters between the Aleutian Islands and the U.S.-U.S.S.R. convention line, and the region between St. Matthew and St. Lawrence Islands. A hydroacoustic survey was also conducted in 1979 to assess the midwater component of the walleye pollock population. Subsequent annual bottom trawl surveys have essentially resampled the stations established during the 1975 survey, with slight modifications This region has been found to encompass the major each year. portion of economically important eastern Bering Sea groundfish populations, except those primarily located in continental slope Every third year (1979, 1982, 1985, 1988) an extended waters. survey has been conducted, including hydroacoustic assessment of midwater pollock, bottom trawl sampling of the continental slope, and bottom trawl sampling in the region between St. Matthew and St. Lawrence Islands. The information gathered by the annual surveys serves to: 1) provide the North Pacific Fishery Management Council with annual fishery-independent estimates of abundance and biological condition of commercially exploited stocks, 2) provide distribution and abundance information to commercial fishermen, and 3) develop a time-series data base contributing to our understanding of the population dynamics and interactions of groundfish species.

This report presents information collected by the AFSC in the eastern Bering Sea during the 1990 bottom trawl survey. The

groundfish/crab survey and several ancillary projects were conducted from 1 June to 8 August by two U.S. vessels. The survey area was also sampled by the Soviet research vessel <u>Novokotovsk</u> from 18 May to 17 July 1990. The survey data collected by the Soviet and the U.S. vessels have not been combined due to differences in survey timing and sampling gear. Results of the Soviet survey will be presented in a future report. Also, detailed information on principal crab species is not included here but can be found in a report by Stevens and Macintosh (1990).

METHODS

Survey Area and Sampling Design

A total of 352 standard and 28 special study stations were successfully sampled during the 1990 survey (Fig. 3). The standard station pattern was based on a systematic 20 x 20 nautical mile grid. In areas surrounding St. Matthew and the Pribilof Islands, grid block corners were also sampled to better assess blue king crab (<u>Paralithodes platupus</u>) concentrations. Starting with the eastern stations, the two vessels fished alternate north/south lines of stations such that coverage of the survey area was similar for each vessel. This sampling design facilitated the computation of relative fishing powers (or catch efficiencies) of the two vessels., The progression from east to west was established to prevent multiple encounters of yellowfin sole, Alaska plaice (<u>Pleuronectes quadrituberculatus</u>), and

υ

perhaps other species which may be migrating eastward during the course of the survey (Smith and Bakkala 1982). Tows were usually 30 minutes in duration and fishing was limited to daylight hours.

For data analysis, the survey region was divided into six subareas bounded by the 50 m, 100 m, and 200 m isobaths and by a line separating the northwest and southeast portions of the study area (Fig. 3). This stratification scheme was designed to reduce the variances of population and biomass estimates by conforming to oceanographic domains which seem to relate to distributions of fishes (Bakkala 1988). The presence of high-density sampling for blue king crab in subareas 3, 4, and 6 necessitated a further division of these subareas into high-density and standard-density sampling strata, resulting in a total of 10 geographic strata.

Of the 356 total standard survey stations, 352 were successfully sampled in 1990 (Appendix A). The overall sampling density for the entire survey area was one station per 1,316 km² (Table 1). However, because of the high-density sampling in subareas 3, 4, and 6, and the irregular subarea boundaries, sampling density among the six subareas varied from one station per 1,147 km² to one per 1,492 km².

Subarea	Area (km²)	No. stations allocated	No. stations successfully sampled	Sampling density (km²/stn)
1	77,872	58	58	1,343
2	41,028	31	31	1,323
3	103,302	76	76	1,359
4	107,822	98	94	1,147
5	38,792	26	26	1,492
6	94,562	67	67	1,411
Subareas combined	463,376	356	352	1,316

Table 1.--Size of subareas and sampling densities by subarea for the 1990 eastern Bering Sea bottom trawl survey (see also Fig. 3).

Vessels and Fishing Gear

For the third consecutive year, the annual eastern Bering Sea bottom trawl survey was conducted aboard the 30.5 m University of Washington research vessel <u>Alaska</u> and the 33.5 m fishing vessel <u>Ocean Hope</u> 3 (Table 2). As in previous years, both vessels were equipped with 83-112 eastern otter trawls which have 25.3 m (83 ft) headropes and 34.1 m (112 ft) footropes (Appendix B). These nets were attached to tail chains with 54.9 m (30 fathoms) paired dandylines. Each lower dandyline had a 0.61 m chain extension connected to the lower wing edge to improve bottom tending characteristics. Steel "V"-doors measuring 1.8 x 2.7 m and weighing 816 kg were used.

Vessel	Overall length(m)	Gross tonnage	Horsepower	<u>Survey</u> Start	<u>period</u> Finish
<u>Alaska</u>	30.5	219	600	1 June	8 August
<u>Ocean Hope 3</u>	33.5	197	850	1 June	8 August

Table 2. --Characteristics of vessels used during the 1990 eastern Bering Sea bottom trawl survey.

SCANMAR¹ net mensuration systems were used aboard each vessel to measure net height and width. Net width was measured by the distance between two sensors attached to the upper dandyline, about 0.61 m in front of the net. For most tows, a mean net width was calculated from observations recorded during the tow. These data were also used to establish a net widthscope (wire-out) relationship for each vessel to enable prediction of net width for tows where net width data were not available (Fig. 4) as described by Rose and Walters (1990). Estimates of net width were used in area-swept calculations.

Data Collection

Sampling procedures used in RACE eastern Bering Sea assessment surveys are described in detail by Wakabayashi et al. (1985). A brief summary follows.

Samples were collected by trawling at the center of each 20 x 20 nautical mile grid block (or corner station, in the case of high-density strata) for 30 minutes (timed after the net had

¹ Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

Figure 4. --Relationship between net-width and scope (wire-out) for the two vessels participating in the 1990 eastern Bering Sea bottom trawl survey.

settled on the bottom), towing at a speed of 1.54 m/sec (3 knots). If the bottom appeared to be untrawlable at the specified location, the nearest trawlable site within the same grid square was used. If the net was ripped or "hung up" on some object on the bottom during the tow, the catch was discarded and a new sample obtained.

Catches of less than approximately 1,150 kg (2,500 lb) were processed entirely while larger catches were subsampled. Economically important fish and invertebrates were sorted to species with the exception of four species of flatfish. Similar features between arrowtooth (Atheresthes stomias) and Kamchatka flounder (Atheresthes evermanni), and flathead sole (Hippoglossoides elassodon) and Bering flounder (Hippoglossoides robustus) made identification of these species difficult within the time constraints of the survey; thus, these species were grouped by genus for purposes of this report. Minor species of fish and invertebrates were sorted to the lowest taxonomic level practicable. Catch weights and numbers by species or species group were estimated directly or, when subsampled, estimated by extrapolating the proportion in the subsample to that of the entire catch weight. Pacific halibut (<u>Hippoglossus stenolepis</u>) and crab species of the genera Paralithodes (red and blue king crabs, <u>camtschatica</u> and <u>platypus</u>, respectively), <u>Chionoecetes</u> (snow and Tanner crabs, <u>opilio</u> and <u>bairdi</u>, respectively), and <u>Erimacrus</u> (hair crabs, <u>isenbeckii</u>) were usually weighed and enumerated from the entire catch.

Size composition data were collected for each commercially important species. Pacific halibut, walleye pollock, Pacific cod, and yellowfin sole were measured whenever caught while other species were measured as time permitted (Table 3). Pacific halibut were measured immediately upon capture and returned to the sea in an effort to reduce sampling mortality for this species. Random samples of the remaining species of up to approximately 200 individuals (300 in the case of walleye pollock) were sexed and measured to the nearest centimeter from the tip of the snout to the end of- the middle rays of the caudal fin (fork length).

Sagittal otoliths were collected from seven commercially important species (Table 4). In both the northwestern and southeastern divisions of the survey area, three otolith pairs per sex/centimeter interval were collected for Pacific cod and rock sole (<u>Pleuronectes bilineatus</u>), and five pairs per sex/centimeter interval for all other species. Scales as well as otoliths were taken from Pacific cod to aid in ageing young fish. Individual weight data were collected from Alaska plaice in conjunction with otolith sampling. In the case of the <u>Hippoglossoides</u>, otoliths were collected only from individuals that were identified with certainty as flathead sole. Age structures for roundfish were preserved in 50% ethanol/water; flatfish otoliths were preserved in 50% glycerol/water.

Temperature profiles were taken at each station with an expendable bathythermograph cast; surface temperatures were taken by bucket thermometer.

		Length	measure	ments by	subarea		
Species	1	2	3	4	5	6	Total
Walleye pollock	2,219	792	5,809	7,821	2,429	12,991	34,814°
Rock sole	11,798	4,392	8,658	6,130	66	1179	32,921°
Yellowfin sole	11,973	4,457	9,825	4,871	9	4	32,312°
<u>Hippoglossoides</u> spp.	760	. 17	5,078	2,999	3,501	4,756	19,383°
Alaska plaice	1,984	1,404	1,737	2,679		43	7,955°
<u>Atheresthes</u> spp.	73		2,061	692	2,435	1,971	7,232
Pacific cod	1,175	345	1,115	1,597	219	826	5,693°
Pacific halibut	1,069	220	256	151	45	54	1,819
Greenland turbot				64		168	544°
Arctic cod							404•
Starry flounder	234	4	13				324•
Rex sole	· 1		9		218	1	229
Longhead dab	75	32					122°
Sakhalin sole				23			100°
Saffron cod	3						92ª
Northern rockfish						13	13
Pacific ocean perch						16	16
Rockfish unident.						4	4
Sablefish			1		1		2
Rougheye rockfish						1	1.

Table 3.--Number of length measurements taken during the 1990 eastern Bering Sea bottom trawl survey.

^aSome length measurements were made in hauls that fell outside the standa survey area, thus, the numbers taken in the six subareas of the standard survey area do not add to the total.

Table 4. --Number of fish in which age structures were collected, by species and subarea, during the 1990 eastern Bering Sea bottom trawl survey.

·			Subarea				
Species	1	2	33	4_	. 5	6	Total
Walleye pollock	28	63	394	264	83	374	1,358°
Pacific cod ^b	131	57	207	280	45	176	9 29ª
Yellowfin sole	232	283	191	98	· 0	0	804
Rock sole	235	146	102	128	0	36	647
Flathead sole	0	0	186	41	28	255	510
Alaska plaice	54	61	. 58	55	0	0	228
Greenland turbot	0	0	0	6	0	49	146°

[•]Some age structures were collected outside the standard survey area, therefore, the numbers collected for the six subareas do not add to the total. [•]Scales were also taken.

Data Analysis

A brief description of the procedures used in analysis of PACE Bering Sea survey data follows (for a detailed description see Wakabayashi et al. 1985). Many of the species collected were grouped by family for data analysis because of their insignificant commercial value or questionable identification.

Since 1979, the Bayesian technique of Geisser and Eddy (1979) was used to compare the relative fishing powers of the two survey vessels. If the distribution of catch-per-unit-effort (CPUE) values for any one species were statistically different between vessels, catch rates of the less efficient vessel were expanded by the ratio of the mean CPUEs (more efficient divided by less efficient) of the two vessels. Recent work at the AFSC determined that the ratio of means was extremely unstable and too sensitive to abnormally large values of CPUE. Consequently, a new method developed by Kappenman (1992) was used to compare CPUE 'distributions and determine a scaling factor for correction. All stations sampled by the two vessels during the standard survey (Fig. 3) were used in the analysis.

Mean CPUE values for each species were calculated in kilograms per hectare and number per hectare for each of the 10 strata; area swept (hectares) was computed as the distance towed multiplied by the mean net width (Alverson and Pereyra 1969). Mean CPUE values, weighted by strata areas, were calculated for individual subareas and for the overall survey area. Biomass and population estimates were derived for each stratum by multiplying the stratum mean CPUE by the stratum area. Stratum totals were then added together to produce estimates for each subarea and for the total survey area.

In estimating the size composition of populations of principal commercial species, length-frequency data obtained at each station were expanded to the station catch by proportion and then extrapolated to the stratum population by the weighted CPUE. Stratum estimates were summed to derive the estimated size composition by subarea and for the overall survey area.

Otolith and scale samples collected during the survey were read by the Age and Growth Determination Unit of the AFSC's Resource Ecology and Fisheries Management (REFM) Division. From

each centimeter interval. Population age composition was estimated by apportioning ages to the estimated population at each length interval. Age composition in terms of biomass was estimated by first calculating biomass at length using the equation:

$B_{L} = P_{L} \star [A \star (L^{B})]$

where B_L = biomass at length L in grams, p_L = population number at length L, L = fork length in mm, and A and B = constants based on the regression of previous species-specific length-weight data obtained from the RACE eastern Bering Sea database.

Values used for the constants A and B are as follows:

			A	В
1)	Walleye	pollock Male Female Unsexed	0.0000081670 0.0000063161 0.0000029701	2.963988 3.010031 3.167916
2)	Pacific	cod	``	
		Male Female	0.0000044268 0.0000043510	3.162674 3.165096
-		Unsexed	0.0000043973	3.163560
3)	Yellowfi	.n sole		
•		Male	0.0000135820	2.960426
		Female	0.0000111310	3.003173
		Unsexed	0.0000119530	2.987584
4)	Rock sol	e		
		A11	0.0000047050	3.169881

After converting weight in grams into metric tons, B_L was then apportioned to biomass at age using the age-length key for each species.

Growth characteristics of principal species were described with von Bertalanffy (1938) growth curves fitted to age-length

data collected in this survey.

Special Studies

In addition to the 352 standard survey tows, 28 tows were made for special studies (Fig. 3). Nearshore sampling for juvenile crab and fish was conducted at three stations in Port Heiden, and at one station in Kvichak Bay. In addition, 2 tows each were made in Togiak and Kuskokwim Bays to assess the abundance and spawning condition of yellowfin sole inshore of the standard survey area, and 20 tows were made to assess the abundance of snow crab northwest of St. Matthew Island. Catches from these 28 tows were used to define geographic distributions of fish groups but were not used to estimate population parameters in order to maintain comparability with estimates from previous standard annual survey areas.

Stomach samples from several of the most prevalent commercial species in each haul were collected and preserved in formalin for later examination by the Food Habits Program of the AFSC's REFM Division (Table 5).

Additional activities included tagging Pacific cod (Table 5), collecting specimens or tissue samples for observer training programs and crab pathology studies, and fulfilling requests from academic institutions.

Table 5. --Biological samples collected for special studies and number of Pacific cod tagged during the 1990 eastern Bering Sea bottom trawl survey.

Species	Stomach samples collected	Number tagged
Walleye pollock	2,706	
Pacific cod	1,470	51
Yellowfin sole	1,139	
Flathead sole	9 58	
Rock sole	613	
Alaska plaice	393	
<u>Atheresthes</u> spp.	281	
Pacific halibut	270	
Greenland turbot	27	

RESULTS

Environmental Conditions

Sea surface temperatures recorded during the survey ranged from 2.3° to 10.8°C (Fig. 5). As in most previous years, surface temperature increased from east to west across the shelf, probably reflecting the progression of summer warming as the survey proceeded from east to west.

Bottom temperatures ranged from -1.5° to 6.8°C (Fig. 5). The warmest temperatures (above 4°C) occurred in shallow waters **along** the Alaska mainland, in the vicinity of the Pribilof Islands, and in the southern portion of the outer shelf just

Figure 5. --Distribution of surface water (top panel) and bottom water (lower panel) temperatures ("C) observed during the 1990 eastern Bering Sea bottom trawl survey.

north of Unimak Pass. The coldest bottom temperatures observed were in the northern portion of the mid-shelf at depths between 50 and 100 m.

The mean bottom water temperature for the total survey area in 1990 was 2.3°C (Fig. 6). Historically, this is below average for mean summer bottom water temperatures in the standard survey area (range in annual means 1.8° to 5.1°C, average of annual means 2.9°C). Mean bottom temperatures observed over a more limited region of the southeast Bering Sea, which has been sampled annually since 1971, have ranged from 1.2° to 4.8°C; the 1990 value for this area was 3.2°C, near the long-term average The distribution of bottom water temperatures was (3.1°C). somewhat unusual in 1990 in that there was a relatively broad distribution of O°C and colder water on the northern midshelf, but the 2°C isotherm did not extend as far south as it normally does when the O°C and colder water is as extensive as it was in This would account for the total survey area mean in 1990 1990. falling below average while the mean for the southeast Bering Sea was near average.

Figure 6. --Mean summer bottom water temperatures based on bathythermograph casts made during Alaska Fisheries Science Center bottom trawl surveys. The 1971-90 means (dashed line) are from the southeast Bering Sea (see inset) and the 1975 and 1979-90 means are from the larger survey area outlined on the inset. The 1975 data point for the overall survey area is based on data collected from August through September, while those in all other years and areas were collected from June through early August.

Relative Fishing Powers of Survey Vessels

A total of 352 alternate-row tows were used in the statistical comparison of vessel catch rates developed by Kappenman (1992). Based on this analysis, the <u>Alaska</u> was significantly more efficient than the <u>Ocean Hope</u> 3 at capturing the following species and species groups: walleye pollock, Pacific cod, <u>Hippoglossoides</u> spp., Alaska plaice, <u>Atheresthes</u> spp., Pacific halibut, <u>Myoxocephalus</u> spp., skates (Rajidae), Tanner crab, and snow crab. The <u>Ocean Hope</u> 3 was more efficient at catching rock sole. Fishing power corrections were applied to catches (by species) of the less efficient vessel (Table 6).

Table 6. --Species for which fishing power corrections were applied, and scaling factors determined by the method of Kappenman (1992).

	<u>Hauls</u>	with catch	<u>Catch multiplier</u>			
Species	<u>Alaska</u>	<u>Ocean Hope 3</u>	<u>Alaska</u>	<u>Ocean Hope 3</u>		
Walleve pollock	172	169	1.00	1.17		
Pacific cod	166	163	1.00	1.05		
Rock sole	155	159	1.04	1.00		
Hippoglossoides spp.	155	151	1.00	1.24		
Alaska plaice	110	127	1.00	1.12		
Atheresthes spp.	88	74	1.00	1.11		
Pacific halibut	104	93	1.00	1.14		
Mvoxocephalus spp.	113	104	1.00	1.09		
Skates	118	104	1.00	1.49		
Tanner crab	129	130	1.00	1.22		
Snow crab	132	129	1.00	1.21		

Estimated Biomass of Major Fish and Invertebrate Groups

Total demersal animal biomass for the overall survey area was estimated at 18.2 million t, of which fish species accounted for 80% (14.6 million t), and invertebrates 20% (3.6 million t). Concentrations of fish biomass were located in Bristol Bay and along the Alaska Peninsula, around the Pribilof Islands, and northwest of the Pribilofs (Fig. 7). Although 18 families and 70 species of fish were identified in the catches (Appendix C), the fish biomass was dominated by cods (Gadidae, 8.4 million t) and flatfishes (Pleuronectidae, 5.4 million t) (Table 7).

The biomass of invertebrates was comprised primarily of the phyla Crustacea (1.6 million t), Mollusca (0.4 million t), and Echinodermata (1.2 million t). A total of 96 invertebrate species were identified in the survey (Table 8, Appendix C).

	Estimated to biomass (t)*	Estimated total Prop biomass (t)* and of		_	Estimated biomass by subarea (t)				
Taxon	95% confide interval	ence	animal biomass ⁶	1	2	3	4	5	6
Gadidae (cods) Walleye pollock Pacific cod Other cods Total cods	7,653,433 + 708,551 + 6,943 + 8,368,926 <u>+</u>	27% 15% 60% 25%	0.421 0.039 < <u>0.001</u> 0.460	122,938 41,425 1,316 165,679	25,667 17,802 4,379 47,848	1,026,680 151,480 0 1,178,160	920,826 123,846 1,247 1,045,920	569,943 62,871 0 632,814	4,987,378 311,127 5,298,505
Anoplopomatidae Sablefish	308 <u>+</u>	96%	<0.001	0	0	85	0	135	88
Scorpaenidae (rockfish Pacific ocean perch Other rockfish Total rockfish	1) 222 + 866 + 1,088 <u>+</u>	166% 161% 161%	<0.001 <0.001 <0.001	0 0	0 0	0	0 0 0	43 134 177	180 732 912
Pleuronectidae (flatfi Yellowfin sole Rock sole <u>Hippoglossoides</u> spp. Alaska plaice <u>Atheresthes</u> spp. Greenland turbot Pacific halibut Other flatfish Total flatfish	ishes) 2,183,777 + 1,408,988 + 525,767 + 454,136 + 14,093 + 89,535 + 46,648 + 5,368,934 <u>+</u>	14%% 13%% 17%% 17%% 617%% 8%% 8%% 8%% 8%% 8%% 8%% 8%% 8%% 8%%	0.120 0.077 0.035 0.029 0.025 0.001 0.005 0.003 0.295	866,296 619,275 23,154 71,609 931 0 25,201 25,634 1,632,100	368,047 190,773 991 55,939 0 5,587 5,673 627,012	673,564 255,074 187,108 138,885 78,284 0 19,607 4,372 1,356,894	275,220 287,730 63,354 231,990 14,897 498 9,203 122 883,014	621 2,271 92,438 0 152,131 0 10,620 <u>8,463</u> 266,543	28 53,863 278,944 27,344 207,894 13,596 19,596 19,318 2,385 603,371
Clupeidae Pacific herring	3,512 <u>+</u>	46%	<0.001	172	1,199	945	849	0	348
Cottidae (sculpins)	224,145 <u>+</u>	19%	0.012	60,149	16,443	21,333	82,541	4,753	38,926
Zoarcidae (eelpouts)	41,215 <u>+</u>	18%	0.002	300	70	4,447	20,910	575	14,912
Osmeridae (smelts)	6,713 <u>+</u>	48%	<0.001	3,571	936	223	61	1,921	0
Agonidae (poachers)	35,284 <u>+</u>	19%	0.002	8,516	8,957	10,120	6,759	343	589
Cyclopteridae (snailfi	shes) 9,027 <u>+</u>	30%	<0.001	56	76	137	7,072	172	1,514
Rajidae (skates)	573,905 <u>+</u>	23%	0.032	15,098	5,085	65,963	88,000	87,559	312,201
Other fish	14,494 <u>+</u>	69%	0.001	2,292	1,719	1,428	640	630	7,785
Total fish	14,647,551 <u>+</u>	14%	0.805	1,887,933	709,344	2,639,734	2,135,765	995,623	6,279,151

Table 7.--Biomass estimates (metric tons) for major fish species and fish groups taken during the 1990 eastern Bering Sea bottom trawl survey.

^aDifferences in sums of estimates and totals are due to rounding.

^bProportion of total estimated b**fosthass**,d invertebrates combined, for the total survey area. Total estimated biomass = 18,199,154 t.

	Estimated to biomass (t)*	tal and	Proportion of total		Estima	ted biomas	<u>s by subar</u>	ea (t)	,
Taxon	95% confide interval	nce	animal biomass ⁶	1	2	3	4	5	6
Crustacea Chionoecetes sp. (snow crab)	947,795 <u>+</u>	16%	0.052	11,721	445	240,933	450,515	43,757	200,424
Lithodes sp.	0	0	0.000	0	0	0	0	0	0
Paralithodes sp.	83,995 <u>+</u>	39%	0.005	9,314	502	49,453	24,291	0	436
(King crab) Erimacrus isenbeckii (bair crab)	3,381 <u>+</u>	101%	<0.001	197	70	556	2,558	0	0
Paguridae (hermit crabs)	474,474 <u>+</u>	15%	0.026	31,489	37,779	170,471	160,128	7,472	67,135
Other crabs Total crabs Shrimps Other crustaceans Total crustaceans	$\begin{array}{r} 49,749 + \\ 1,559,394 + \\ 4,295 + \\ 4,635 + \\ 1,558,324 + \end{array}$	29% 11% 31% 115% 11%	0.003 0.086 <0.001 < <u>0.001</u> 0.086	17,052 69,772 295 2,243 72,310	11,022 49,817 278 58 50,153	10,884 472,298 303 580 473,181	8,854 646,346 467 1,673 648,485	511 51,740 542 21 52,303	1,426 269,422 2,410 61 271,893
Mollusca Gastropoda (snails) Pelecypoda (bivalves) Squids Octopuses Other mollusks Total mollusks	$\begin{array}{r} 409,898 + \\ 6,507 \mp \\ 5,751 \mp \\ 11,566 \mp \\ 0 \\ 433,722 + \end{array}$	18% 83% 196% 96% 0 17%	0.023 <0.001 <0.001 0.001 0.000 0.024	23,143 928 5,632 0 <u>0</u> 29,703	37,546 783 0 0 38,328	107,754 4,043 48 2,959 0 114,803	99,214 57 323 99,594	6,215 276 21 581 0 7,094	136,026 421 50 7,703 0 144,200
Echinodermata Asteroidea (starfishes) Ophiuroidea	974,100 <u>+</u> 216,949 <u>+</u>	13% 34%	0.054 0.012	380,933 3,132	158,021 2,492	218,406 53,996	166,478 21,533	3,016 22,462	47,246 113,334
(brittle stars) Echinoidea	9.710 +	49%	0.001	304	0	3.515	1,190	2.082	2,618
(sea urchins) Holothuroidea	10,775 <u>+</u>	96%	0.001	5,209	99	4,520	929	0	18
(sea cucumbers) Total echinoderms	1,211,534 ±	12%	0.068	389,578	160,612	280,438	190,130	27,561	163,216
Ascidiacea	171,219 <u>+</u>	30%	0.009	29,026	25,135	60,167	56,854	3	. 35
Porifera (sponges)	32,198 <u>+</u>	61%	0.002	2,729	334	27,646	341	104	1,045
Coelenterata	104,568 <u>+</u>	22%	0.006	7,674	1,487	37,137	22,858	28,854	6,558
Other invertebrates	30,037 <u>+</u>	93%	0.002	24,967	1,423	1,262	78	18	2,289
Total invertebrates	3,551,603 <u>+</u>	7%	0.195	555,988	277,471	994,633	1,018,340	115,936	589,235

Table 8.--Biomass estimates (metric tons) for major invertebrate species and invertebrate groupstaken during the 1990 eastern Bering Sea bottom trawl survey.

^aDifferences in sums of estimates and totals are due to rounding.

^bProportion of total estimated biomalisesh, and invertebrates combined, for the total survey area. Total estimated biomass = 18,199,154 t.

Relative Abundance of Individual Fish Species The 11 most abundant species and species groups of fish are shown in Figure 8. These taxa accounted for 79% (309 kg/ha) of total animal mean CPUE (393 kg/ha) and 98% of total fish mean CPUE (316 kg/ha). Overall, but particularly in water deeper than 50 m, walleye pollock were the most dominant species in the catch with a mean CPUE of 165 kg/ha. Similarly, Pacific cod were more abundant at depths exceeding 50 m, but their overall mean CPUE Yellowfin sole and rock sole, with overall was only 15 kg/ha. mean catch rates of 47 kg/ha and 30 kg/ha respectively, dominated catches in water less than 50 m. Alaska plaice, butterfly sculpins (Hemilepidotus papilio) and Myoxocephalus sculpins were most prominent at depths less than 100 m. Conversely, Hippoglossoides spp., Atheresthes spp., and skates were most abundant in water greater than 100 m. Pacific halibut were present at low levels in all depth zones. See Appendix D for a descending rank of all organisms caught.

Figure 8. --Relative abundance (%CPUE in kg/ha) of principal groundfish species by depth zone and for all depths combined, 1990 eastern Bering Sea bottom trawl survey.

Abundance, Distribution, and Size and Age Composition of Principal Species and Species Groups

Geographical distributions, population numbers and biomass estimates, and size composition are presented for each of the following commercially important eastern Bering Sea groundfish: walleye pollock, Pacific cod, yellowfin sole, rock sole, Hippoglossoides spp., Alaska plaice, Greenland turbot, Atheresthes spp., and Pacific halibut (Tables 9-29 and Figs. 9-43). Estimated biomass, population number, and mean size (by length and weight) are summarized by subarea and for the entire Size composition data are illustrated in histograms survey area. relating the population percentage of length by centimeter interval for each subarea and in population numbers for the total survey area. Age composition and von Bertalanffy growth parameters are given for walleye pollock, Pacific cod, yellowfin sole, and rock sole. Geographical distributions for noncommercial fish groups are presented in Figures 44 to 49; biomass estimates for these groups are found in Table 7.

Appendices to the report contain detailed results of the analysis. CPUE, population, and biomass estimates are given for each species by stratum in Appendix E. Population estimates by sex and size class are listed for the total survey area in Appendix F. Age-length keys and population estimates by age are given in Appendices G and H, respectively.

	Mean	Estimated	Propertion	Estimated	Proportion	Mean	size
Subarea	CPUE* (kg/ha)	biomass" (t)	of estimated biomass	population numbers"	of estimated population	Weight (kg)	Length (cm)
1	15.79	122,938	0.016	386,666,332	0.033	0.318	24.5
2	6.26	25,667	0.003	74,758,265	0.006	0.343	21.6
3	99.39	1,026,680	0.134	1,297,195,014	0.111	0.791	43.5
4	85.40	920,826	0.120	1,338,283,460	0.115	0.688	40.0
5	146.92	569,943	0.074	649,720,531	0.056	0.877	47.8
6	527.42	4,987,378	0.652	7,939,576,760	0.679	0.628	42.5
All subareas combined ⁶	165.17	7,653,433	1.000	11,686,200,362	1.000	0.655	41.9
95% confidence interval		<u>+</u> 2,033,294		<u>+</u> 2,913,351,448			

Table 9. --Abundance estimates and mean size of walleye pollock by subarea, 1990 eastern Bering Sea bottom trawl survey.

Variances of abundance estimates are given in Appendix E.

differences in sums of estimates and totals are due to rounding.

Figure 10. --Estimated relative size composition of walleye pollock (sexes combined) by subarea, 1990 eastern Bering Sea bottom trawl survey.

Figure 11. --Estimated size composition of walleye pollock (sexes combined), all subareas combined, 1990 eastern Bering Sea bottom trawl survey.
				Depth a	nd subarea				
		100-	-200 m	m 50-100 m		<5	0 m	A11	
Age	Year class	6	5	4	3	2	1	subareas combined	Proportion of total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 >18 >18 Age u	1989 1988 1987 1986 1985 1984 3, 1982 1, 1981 1980 1979 1978 1977 1976 1975 1974 1972 nknown	600.12 223.87 71.51 525.62 983.56 124.51 596.64 314.01 118.29 134.61 18.70 180.44 18.81 10.22 11.08 2.33 1.83 1.76 1.67	$\begin{array}{r} 3.61\\ 0.15\\ 0.64\\ 21.07\\ 63.56\\ 238.99\\ 48.90\\ 158.76\\ 17.42\\ 36.29\\ 5.46\\ 45.73\\ 3.22\\ 2.87\\ 1.71\\ 0.10\\ 0.58\\ 0.59\\ 0.07\end{array}$	$\begin{array}{r} 370.08\\ 16.56\\ 2.58\\ 9.41\\ 42.25\\ 220.24\\ 57.45\\ 243.97\\ 34.86\\ 112.40\\ 17.25\\ 164.92\\ 11.59\\ 10.57\\ 6.45\\ 0.46\\ 3.26\\ 1.32\\ 12.66\end{array}$	$\begin{array}{c} 204.19\\ 9.40\\ 2.18\\ 14.69\\ 74.38\\ 347.18\\ 90.61\\ 270.43\\ 32.25\\ 82.85\\ 14.58\\ 122.09\\ 9.48\\ 8.76\\ 5.86\\ 0.88\\ 1.78\\ 1.22\\ 4.38\end{array}$	58.74 0.00 0.00 0.00 0.00 0.11 0.08 1.12 0.41 2.58 0.49 7.71 0.54 1.07 0.79 0.29 0.17 0.03 0.64	$\begin{array}{c} 272.20\\ 1.61\\ 0.85\\ 1.24\\ 0.52\\ 4.41\\ 2.03\\ 12.17\\ 3.51\\ 19.67\\ 3.69\\ 45.23\\ 4.41\\ 3.94\\ 2.96\\ 1.69\\ 1.34\\ 0.14\\ 5.04 \end{array}$	1,508.93 251.60 77.77 572.04 $1,164.27$ $3,935.44$ 795.72 $2,000.46$ 206.74 388.40 60.17 566.13 48.04 37.43 28.86 5.74 8.94 5.07 24.45	$\begin{array}{c} 0.129\\ 0.022\\ 0.007\\ 0.049\\ 0.100\\ 0.337\\ 0.068\\ 0.171\\ 0.018\\ 0.033\\ 0.005\\ 0.048\\ 0.004\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.001\\ 0.001\\ <.001\\ <.001\\ <.001\\ \end{array}$
All a combi	ges. ned 7,	939.58	649.72	1,338.28	1,297.20	74.76	386.67	11,686.20	1.000

Table 10.--Estimated population numbers (millions of fish of walleye pollock by age group and subarea, 1990 eastern Bering Sea bottom trawl survey.

'Differences in sums of estimates and totals are due to rounding.

Age	Year Class	Biomass (t)	Proportion of total
1	1989	26,287	0.0034
2	1988	30,491	0.0040
3	1987	15,224	0.0020
4	1986	256,242	0.0335
5	1985	686,866	0.0897
6	1984	2,641,918	0.3452
7	1983	572,957	0.0749
8	1982	1,702,448	0.2224
9	1981	194,656	0.0254
10	1980	478,147	0.0625
11	1979	75,614	0.0099
12	1978	770,760	0.1007
13	1977	61,639	0.0081
14	1976	57,741	0.0075
15	1975	42,509	0.0056
16	1974	13,390	0.0017
18	1972	15,708	0.0021
>18	•	6,469	0.0008
Age unki	nown	4,367	0.0006
All ages	5 .		
combined	1*	7,653,433	1.0000

Table	11.	Estimated	biom	ass (me	etric t	cons) of	walleye	È
		pollock b	y age	group,	1990	eastern	Bering	Sea
		bottom tr	awl su	urvey.				

'Differences in totals are due to rounding.

Figure 12. --Population number and biomass (metric tons) estimates by age for walleye pollock, 1990 Bering Sea bottom trawl survey.

Table 12. --Von Bertalanffy growth parameter estimates for walleye pollock by sex, based on otolith age readings and length data from the 1990 eastern Bering Sea bottom trawl survey.

	Number of age	Age range	Length range	Pa	ramete	rs
Sex	readings	(years)	(cm)	L _{inf}	ĸ	t,
Male	573	1-18	15-78	70.0	0.14	-1.04
Female	623	1-22	16-79	74.9	0.14	-0.86

Figure 13. --Von Bertalanffy growth curves and mean lengths at age (symbols) for male and female walleye pollock, 1990 eastern Bering Sea bottom trawl survey.

Table 13.--Abundance estimates and mean size of Pacific cod by subarea, 1990 eastern Bering Sea bottom trawl survey.

	Mean	Estimated	Proportion	Estimated	Proportion	Mean	size
Subarea	CPUE* (kg/ha)	biomass" (t)	of estimated biomass	population numbers*	of estimated population	Weight (kg)	Length (cm)
1	5.32	41,425	0.058	100,308,812	0.231	0.413	22.8
2	4.34	17,802	0.025	30,343,358	0.070	0.587	23.7
3	14.66	151,480	0.214	85,213,945	0.196	1.778	44.7
4	11.49	123,846	0.175	126,767,083	0.292	0.977	36.1
5	16.21	62,871	0.089	15,648,630	0.036	4.018	66.4
6	32.90	311,127	0.439	76,374,068	0.176	4.074	64.2
All subareas combined ⁶	15.29	708,551	1.000	434,655,895	1.000	1.630	39.9
95% confidence interval		<u>+</u> 105,306		<u>+</u> 74,838,809			

^aVariances of abundance estimates are given in Appendix E.

 $^{\mathrm{b}}\mathrm{differences}$ in suns of estimates and totals are due to rounding.

Figure 15. --Estimated relative size composition of Pacific cod (sexes combined) by subarea, 1990 eastern Bering Sea bottom trawl survey.

Figure 16. --Estimated size composition of Pacific cod (sexes combined), all subareas combined, 1990 eastern Bering Sea bottom trawl survey.

		100-	·200 m	50-100 m <50 m	ווא				
Age	Year class	6	5	4	3	2	1	subareas combined	Proportion of total
1 2 3 4 5 6 7 8 9 10 12 13 14	1989 1988 1987 1986 1985 1984 1983 1982 1981 1980 1978 1977 1976	0.12 2.75 1.69 7.46 15.24 21.67 17.65 7.16 1.14 0.33 0.02 0.00 0.32	0.00 0.12 0.71 1.64 2.82 3.79 3.06 2.72 0.37 0.05 0.05 0.03 0.03	32.6027.9718.8014.6413.5411.424.111.690.100.050.000.000.04	7.14 10.15 32.19 9.54 7.46 8.10 4.43 3.85 0.56 0.20 0.36 0.00 0.14	20.91 2.42 0.90 0.34 0.92 1.96 1.19 0.13 0.03 0.00 0.00 0.00 0.00	58.0915.3913.431.631.112.101.821.000.100.000.000.000.00	$ \begin{array}{r} 118.87 \\ 58.79 \\ 67.73 \\ 35.24 \\ 41.09 \\ 49.04 \\ 32.26 \\ 16.55 \\ 2.29 \\ 0.63 \\ 0.43 \\ 0.03 \\ 0.51 \\ \end{array} $	0.274 0.135 0.156 0.081 0.095 0.113 0.074 0.038 0.005 0.001 0.001 <0.001
Age u	Inknown	0.83	0.26	1.81	1.11	1.54	5.64	11.20	0.026
All a combi	ges. .ned	76.37	15.65	126.77	85.21	30.34	100.31	434.66	1.000

Table 14.--Estimated population numbers (millions of fish) of Pacific cod by age group and subarea, 1990 eastern Bering Sea bottom trawl survey.

*Differences in sums of estimates and totals are due to rounding.

	Year	Biomass	Proportion
<u>Aqe</u>	<u>class</u>	(t)	<u>of total</u>
-			
1	1989	4,595	0.0065
2	1988	12,951	0.0183
3	1987	33,504	0.0473
4	1986	42,799	0.0604
5	1985	92,556	0.1306
6	1984	163,450	0.2307
7	1983	163,251	0.2304
8	1982	122,255	0.1725
9	1981	21,507	0.0304
10	1980	5,535	0.0078
12	1978	3,923	0.0055
13	1977	459	0.0006
14	1976	5,495	0.0078
Age unkr	nown	36,272	0.0512
All ages combined	5.	708,551	1.0000

Table 15	Estimated biomass (metric tons) of Pacific
	cod by age group, 1990 eastern Bering Sea bottom trawl survey.

Differences in totals are due to rounding.

Figure 17. --Population number and biomass (metric tons) estimates by age for Pacific cod, 1990 eastern Bering Sea bottom trawl survey.

44

Table 16. --Von Bertalanffy growth parameter estimates for Pacific cod by sex, based on otolith age readings and length data from the 1990 eastern Bering Sea bottom trawl survey.

	Number of age	Age range	Length range	Pa	ramete	rs
Sex	readings	(years)	(cm)	L _{inf}	К	t,
Male	400	1-14	12-97	142.6	0.10	-0.08
Female	393	1-14	11-103	165.5	0.08	-0.10

Figure 18.--Von Bertalanffy growth curves and mean lengths at age (symbols) for male and female Pacific cod, 1990 eastern Bering Sea bottom trawl survey.

	Mean	Estimated	Proportion	Estimated	Proportion	Mean	size
Subarea	CPUE" (kg/ha)	biomass ^a (t)	of estimated biomass	population numbers*	of estimated population	Weight (kg)	Length (cm)
1	111.25	866,296	0.397	3,984,184,493	0.440	0.217	24.6
2	89.71	368,047	0.169	1,997,283,772	0.220	0.184	22.8
3	65.20	673,564	0.308	2,177,907,028	0.240	0.309	28.6
4	25.53	275,220	0.126	899,506,626	0.099	0.306	27.5
5	0.16	621	< 0.001	960,302	< 0.001	0.646	35.0
6	0.00	28	< 0.001	147,422	< 0.001	0.191	26.4
All subareas combined ^b	47.13	2,183,777	1.000	9,059,989,643	1.000	0.241	25.4
95% confidence interval		<u>+</u> 296,843		± 1,407,515,110			

Table 17. --Abundance estimates and mean size of yellowfin sole by subarea, 1990 eastern Bering Sea bottom trawl survey.

variances of abundance estimates are given in Appendix E.

differences in sues of estimates and totals are due to rounding.

Figure 20. --Estimated relative size composition of yellowfin sole (sexes combined) by subarea, 1990 eastern Bering Sea bottom trawl survey.

Figure 21. --Estimated size composition of yellowfin sole (sexes combined), all subareas combined, 1990 eastern Bering Sea bottom trawl survey.

				Depth and subarea					
		100-	200 m	5(50-100 m <50 m		114		
Age	Year class	6	5	4	3	2	1	subareas combined	Proportion of total
3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 5 8 9 0 11 2 2 3 4 5 5 8 9 0 11 2 2 3 4 5 5 8 9 0 11 2 2 3 4 5 5 8 9 0 11 2 2 3 4 5 5 8 9 0 11 2 2 3 4 5 5 5 8 9 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1975 1977 1976 1975 1977 1976 1975 1977 1976 1968 1965	0.00 0.00 <.01 0.02 0.01 0.02 0.01 <.01 0.00 <.01 0.00	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.01\\ 0.01\\ 0.01\\ 0.11\\ 0.05\\ 0.09\\ 0.03\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.05\\ 0.05\\ 0.11\\ 0.00\\ 0.05\\ 0.03\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.03\\ 0.00\\ 0.05\\ 0.00\\$	$\begin{array}{c} 0.00\\ 0.00\\ 1.63\\ 18.55\\ 126.90\\ 37.61\\ 358.13\\ 106.78\\ 95.83\\ 15.27\\ 9.06\\ 14.60\\ 8.99\\ 29.70\\ 14.75\\ 5.72\\ 8.90\\ 17.57\\ 13.32\\ 4.14\\ 9.19\\ 0.62\\ 0.83\\ 1.41\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.26\\ 4.95\\ 36.37\\ 240.86\\ 66.22\\ 684.39\\ 232.37\\ 277.09\\ 51.75\\ 48.64\\ 59.58\\ 39.31\\ 109.73\\ 70.07\\ 45.32\\ 41.25\\ 54.09\\ 54.75\\ 12.05\\ 36.17\\ 2.49\\ 4.19\\ 6.07\end{array}$	$\begin{array}{c} 1.32\\ 31.87\\ 79.93\\ 221.64\\ 646.21\\ 111.50\\ 474.14\\ 120.12\\ 85.00\\ 13.80\\ 12.58\\ 20.16\\ 10.12\\ 32.94\\ 22.12\\ 13.31\\ 15.39\\ 22.39\\ 22.64\\ 6.97\\ 17.36\\ 1.96\\ 3.83\\ 4.14\end{array}$	$\begin{array}{r} 9.37\\ 84.42\\ 134.35\\ 361.15\\ 933.62\\ 171.30\\ 884.55\\ 267.34\\ 288.65\\ 60.83\\ 67.38\\ 80.59\\ 44.01\\ 113.74\\ 93.26\\ 80.24\\ 63.55\\ 67.39\\ 74.47\\ 12.99\\ 52.62\\ 5.39\\ 9.01\\ 11.38\end{array}$	$10.69 \\ 116.55 \\ 220.86 \\ 637.72 \\ 1,947.61 \\ 386.65 \\ 2,401.38 \\ 726.59 \\ 746.66 \\ 141.69 \\ 137.66 \\ 174.94 \\ 102.45 \\ 286.22 \\ 200.28 \\ 144.61 \\ 129.15 \\ 161.50 \\ 165.24 \\ 36.20 \\ 115.45 \\ 10.45 \\ 17.91 \\ 23.03 \\ 10000000000000000000000000000000000$	0.001 0.013 0.024 0.070 0.215 0.043 0.265 0.080 0.082 0.016 0.015 0.019 0.011 0.032 0.022 0.016 0.014 0.018 0.018 0.018 0.013 0.001 0.002 0.003
All a combi	ges ned	0.15	0.96	899.51	2,177.91	5.86 1,997.28	12.61 3,984.18	18.50 9,059.99	0.002

Table 18.--Estimated population numbers (millions of fish) of yellowfin sole by age group and subarea, 1990 eastern Bering Sea bottom trawl survey.

*Differences in sums of estimates and totals are due to rounding.

Age	Year class	Biomass (t)	Proportion of total
		· · · · · · ·	
3	1987	209	0.0001
4	1986	3,549	0.0016
5	1985	12,216	0.0056
6	1984	53,372	0.0244
7	1983	237,340	0.1087
8	1982	58,580	0.0268
9	1981	522,945	0.2395
10	1980	188,547	0.0863
11	1979	253,990	0.1163
12	1978	63,435	0.0290
13	1977	59,122	0.0271
14	1976	73,870	0.0338
15	1975	46,370	0.0212
16	1974	132,393	0.0606
17	1973	89,957	0.0412
18	1972	61,049	0.0280
19	1971	60,455	0.0277
20	1970	76,427	0.0350
21	1969	80,858	0.0370
22	1968	21,003	0.0096
23	1967	59,322	0.0272
24	1966	6,106	0.0028
25	1965	9,871	0.0045
26	1964	6,208	0.0028
>26		6,266	0.0029
Age unkno	own	316	0.0001
All ages			
combined	•	2,183,777	1.0000

Table	lgEstimated biomass	(metri	lc tons)	of yel	lowfir	1
	sole by age group,	1990	eastern	Bering	Sea	
	bottom trawl surve	у٠				

'Differences in totals are due to rounding.

Figure 22. --Population number and biomass (metric tons) estimates by age for yellowfin sole, 1990 eastern Bering Sea bottom trawl survey.

Table 20 Von Bertalanffy growth parameter estimates	
for yellowfin sole by sex, based on	
otolith age readings and length data from	
the 1990 eastern Bering Sea bottom trawl survey	•

	Number of age	Age range	Length range	Parameters				
Sex	readings	(years)	(cm)	L _{inf}	K	t。		
Male	357	3-29	11-39	34.4	0.17	1.64		
Female	435	4-28	11-44	38.9	0.16	1.94		

Figure 23.--Von Bertalanffy growth curves and mean lengths at (symbols) for male and female yellowfin sole, 1990 age eastern Bering Sea bottom trawl survey.

. .

. .

56

	Mean	Estimated	Proportion	Estimated	Proportion	Mean	size
Subarea	CPUE" (kg/ha)	biomass" (t)	of estimated biomass	population numbers*	of estimated population	Weight (kg)	Length (cm)
1	79.53	619,275	0.440	5,859,090,863	0.554	0.106	18.2
2	46.50	190,773	0.135	1,574,987,566	0.149	0.121	17.5
3	24.69	255,074	0.181	1,892,988,308	0.179	0.135	20.5
4	26.69	287,730	0.204	1,126,613,922	0.107	0.255	25.5
5	0.59	2,271	0.002	5,272,267	< 0.001	0.431	32.9
6	5.70	53,863	0.038	115,669,665	0.011	0.466	32.3

10,574,622,592

± 1,663,697,057

1.000

0.133

19.5

1.000

Table 21. -- Abundance estimates and mean size of rock sole by subarea, 1990 eastern Bering Sea bottom trawl survey.

^aVariances of abundance estimates are given in Appendix E.

1,408,988

± 178,693

ALL

95% confidence interval

subareas combined^b 30.41

differences in sues of estimates and totals are due to rounding.

Figure 25. --Estimated relative size composition of rock sole (sexes combined) by subarea, 1990 eastern Bering Sea bottom trawl survey.

Figure 26. --Estimated size composition of rock sole (sexes combined), all subareas combined, 1990 eastern Bering Sea bottom trawl survey.

				Dept					
		100-	200 m	5(0-100 m	<50 m		114	
Age	Year class	6	5	4	3	2	1	subareas combined	Proportion of total
234 567890 11213145 167189021 >21 Age	1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 1976 1977 1976 1975 1974 1973 1972 1971 1970 1969 unknown	$\begin{array}{c} 0.00\\ 0.08\\ 0.91\\ 3.64\\ 6.01\\ 22.65\\ 13.79\\ 24.51\\ 19.86\\ 9.11\\ 3.67\\ 4.06\\ 1.56\\ 3.02\\ 0.09\\ 0.00\\ 0.42\\ 0.00\\ 1.33\\ 0.37\\ 0.51\\ 0.07\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.07\\ 0.26\\ 1.01\\ 0.64\\ 1.24\\ 0.80\\ 0.40\\ 0.24\\ 0.19\\ 0.10\\ 0.21\\ 0.00\\ 0.03\\ 0.00\\ 0.05\\ 0.00\\ 0.05\\ 0.00\\ 0.04\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.17\\ 27.74\\ 223.07\\ 172.97\\ 111.09\\ 195.29\\ 77.94\\ 124.35\\ 82.11\\ 36.22\\ 18.99\\ 20.34\\ 5.94\\ 13.21\\ 0.07\\ 0.00\\ 3.05\\ 0.00\\ 7.15\\ 1.57\\ 3.38\\ 1.94\end{array}$	1.09 119.78 622.46 460.02 231.78 245.31 49.12 69.32 48.83 16.64 6.62 8.83 2.42 5.39 0.09 0.00 0.25 0.00 3.80 0.20 0.55 0.49	$\begin{array}{r} 47.31\\ 558.76\\ 406.26\\ 142.05\\ 82.11\\ 128.14\\ 44.66\\ 62.92\\ 45.37\\ 20.92\\ 8.36\\ 9.29\\ 2.47\\ 6.89\\ 0.38\\ 0.00\\ 1.56\\ 0.00\\ 1.56\\ 0.00\\ 4.26\\ 0.79\\ 1.49\\ 1.00\end{array}$	$\begin{array}{c} 61.44\\ 1,326.42\\ 1,970.16\\ 921.38\\ 489.05\\ 531.08\\ 147.44\\ 173.47\\ 114.32\\ 47.10\\ 19.05\\ 22.20\\ 5.23\\ 11.44\\ 0.45\\ 0.00\\ 2.31\\ 0.00\\ 8.66\\ 0.97\\ 2.92\\ 4.01\end{array}$	$ \begin{array}{c} 110.01\\ 2,032.78\\ 3,222.88\\ 1,700.14\\ 920.30\\ 1,123.49\\ 333.59\\ 455.79\\ 311.28\\ 130.39\\ 56.93\\ 64.90\\ 17.71\\ 40.17\\ 1.10\\ 0.00\\ 7.63\\ 0.00\\ 25.25\\ 3.90\\ 8.89\\ 7.50\end{array} $	$\begin{array}{c} 0.010\\ 0.192\\ 0.305\\ 0.161\\ 0.087\\ 0.106\\ 0.032\\ 0.043\\ 0.029\\ 0.012\\ 0.005\\ 0.005\\ 0.006\\ 0.002\\ 0.004\\ <.001\\ 0.000\\ 0.001\\ 0.000\\ 0.002\\ <.001\\ 0.001\\ 0.001\\ \end{array}$
All comb	ages ined	115.67	5.27	1,126.61	1,892.99	1,574.99	5,859.09	10,574.62	1.000

Table	22.	Estimated	l por	pulation	numbers	mi]	llions	of	fish)	of	rock	sole	by	age	group	and
			1990	eastern	Bering	sea	botton	n tr	rawl a	surve	∋у.		-	-		

*Differences in sums of estimates and totals are due to rounding.

Age	Year	Biomass (t)	Proportion of total
2	1988	• 910	0.0006
3	1987	30,748	0.0218
4	1986	129,753	0.0921
5	1985	146,959	0.1043
6	1984	143,763	0.1020
7	1983	279,346	0.1983
8	1982	120,738	0.0857
9	1981	194,102	0.1378
10	1980	144,816	0.1028
11	1979	73,390	0.0521
12	1978	34,673	0.0246
13	1977	36,741	0.0261
14	1976	10,600	0.0075
15	1975	25,797	0.0183
16	1974	1,123	0.0008
18	1972	7,682	0.0055
20	1970	13,837	0.0098
21	1969	4,244	0.0030
>21		7,746	0.0055
Age unkr	nwoi	2,019	0.0014
All ages combined	i.	1,408,988	1.0000

Table	23.	Estimat	ed k	oiomass	(meti	ric	tons)	of	rock	sole
		by age trawl s	gro urve	р, 199 у.	0 east	cern	Beri	ng	Sea b	ottom

*Differences in totals are due to rounding.

Figure 27. --Population number and biomass (metric tons) estimates by age for rock sole, 1990 eastern Bering Sea bottom trawl survey.

Table 24. --Von Bertalanffy growth parameter estimates for rock sole by sex, based on otolith age readings and length data from the 1990 eastern Bering Sea bottom trawl survey.

	Number of age	Age range	Length range	Pa	ramete	rs
Sex	readings	(years)	(cm)	L _{inf}	ĸ	t,
Male	260	2-21	8-38	36.1	0.24	1.56
Female	358	2-26	9-48	46.3	0.17	1.51

Figure 28.--Von Bertalanffy growth curves and mean lengths at age (symbols) for male and female rock sole, 1990 eastern Bering Sea bottom trawl survey.

ი ე

	Mean	Estimated	Proportion	Estimated	Proportion	Mean_size		
Subarea	CPUE" (kg/ha)	biomass ^e (t)	of estimated biomass	population numbers*	of estimated population	Weight (kg)	Length (cm)	
1	2.97	23,154	0.036	71,708,388	0.030	0.323	28.5	
2	0.24	991	0.002	2,227,843	0.001	0.445	32.1	
3	18.11	187,108	0.290	616,573,195	0.254	0.303	29.5	
4	5.88	63,354	0.098	219,553,611	0.091	0.289	28.2	
5	23.83	92,438	0.143	565,727,480	0.233	0.163	24.2	
6	29.50	278,944	0.432	950,119,228	0.392	0.294	28.0	
All subareas combined ^b	13.94	645,990	1.000	2,425,909,745	1.000	0.266	27.5	
95% confidence interval		<u>+</u> 111,710		<u>+</u> 352,142,682				

Table 25. --Abundance estimates and mean size of <u>Hippoglossoides</u> spp. by subarea, 1990 eastern Bering Sea bottom trawl survey.

 $\ensuremath{^{a}Var}$ are given in Appendix E.

^bdifferences in sum of estimates and totals are due to rounding.

Figure 30. --Estimated relative size composition of <u>Hippoglossoides</u> Spp. (sexes combined) by subarea, 1990 eastern Bering Sea bottom trawl survey.

Figure 31.--Estimated size composition of <u>Hippoglossoides</u> spp. (sexes combined), all subareas combined, 1990 eastern Bering Sea bottom trawl survey.

Table 26. --Abundance estimates and mean size of Alaska plaice by subarea, 1990 eastern Bering Sea bottom trawl survey.

	Mean	Estimated	Proportion	Estimated	Proportion	Mean size		
Subarea	CPUE" (kg/ha)	biomass" (t)	of estimated biomass	population numbers ⁴	of estimated population	Weight (kg)	Length (cm)	
1	9.20	71,609	0.136	157,693,212	0.212	0.454	31.0	
2	13.63	55,939	0.106	116,389,397	0.156	0.481	31.3	
3	13.44	138,885	0.264	180,050,945	0.242	0.771	38.0	
4	21.52	231,990	0.441	274,973,855	0.370	0.844	38.5	
5	0.00	0	0.000	0	0.000	0.000	0.0	
6	2.89	27,344	0.052	15,040,715	0.020	1.818	48.8	
All subareas combined ⁶	11.35	525,767	1.000	744,148,125	1.000	0.707	35.9	
95% confidence interval		<u>+</u> 99,872		<u>+</u> 134,335,659				

^aVariances of abundance estimates are given in Appendix E.

 $^{\mathrm{b}}\mathrm{differences}$ in sums of estimates and totals are due to rounding.

Figure 33. --Estimated relative size composition of Alaska plaice (sexes combined) by subarea, 1990 eastern Bering Sea bottom trawl survey.

Figure 34.--Estimated size composition of Alaska plaice (sexes combined), all subareas combined, 1990 eastern Bering Sea bottom trawl survey.

	Hean	Estimated	Proportion	Estimated	Proportion	Mean size		
Subarea	CPUE" (kg/ha)	biomass" (t)	of estimated biomass	population numbers [*]	of estimated population	Weight (kg)	Length (cm)	
1	0.00	0	0.000	0	0.000	0.000	0.0	
2	0.00	0	0.000	0	0.000	0.000	0.0	
3	0.00	0	0.000	0	0.000	0.000	0.0	
4	0.05	498	0.035	3,751,606	0.213	0.133	16.2	
5	0.00	0	0.000	0	0.000	0.000	0.0	
6	1.44	13,596	0.965	13,883,838	0.787	0.979	35.4	
All subareas combined ^b	0.30	14,093	1.000	17,635,444	1.000	0.799	31.3	
95% confidence interval		<u>+</u> 8,637		<u>+</u> 6,304,701				

Table 27. --Abundance estimates and mean size of Greenland turbot by subarea, 1990 eastern Bering Sea bottom trawl survey.

Variances of abundance estimates are given in Appendix E.

Differences in suns of estimates and totals are due to rounding.

Figure 36. --Estimated relative size composition of Greenland turbot (sexes combined) by subarea, 1990 eastern Bering Sea bottom trawl survey.

Figure 37. --Estimated size composition of Greenland turbot (sexes combined), all subareas combined, 1990 eastern Bering Sea bottom trawl survey.

	Mean	Estimated	Proportion	Estimated	Proportion	Mean size			
Subarea	CPUE* (kg/ha)	biomass* (t)	of estimated biomass	population numbers*	of estimated population	Weight (kg)	Length (cm)		
1	0.12	931	0.002	8,910,330	0.010	0.104	21.7		
2	0.00	0	0.000	0	0.000	0.000	0.0		
3	7.58	78,284	0.172	241,468,136	0.259	0.324	30.5		
4	1.38	14,897	0.033	58,019,570	0.062	0.257	27.8		
5	39.22	152,131	0.335	316,539,755	0.340	0.481	34.5		
6	21.98	207,894	0.458	306,695,919	0.329	0.678	39.0		
All subareas combined ^b	9.80	454,136	1.000	931,633,711	1.000	0.487	34.4		
95% confidence interval		<u>+</u> 78,745		<u>+</u> 160,151,726					

Table 28.--Abundance estimates and mean size of <u>Atheresthes</u> spp. by subarea, 1990 eastern Bering Sea bottom trawl survey.

Variances of abundance estimates are given in Appendix E.

Differences in suns of estimates and totals are due to rounding.

Figure 39. --Estimated relative size composition of <u>Atheresthes</u> spp. (sexes combined) by subarea, 1990 eastern Bering Sea bottom trawl survey.

Figure 40. --Estimated size composition of <u>Atheresthes</u> spp. (sexes combined), all subareas combined, 1990 eastern Bering Sea bottom trawl survey.

	Mean	Estimated	Proportion	Estimated	Proportion	<u>Mean size</u>		
Subarea	CPUE" (kg/ha)	biomass" (t)	of estimated biomass	population numbers*	of estimated population	Weight (kg)	Length (cm)	
, 1	3.24	25,201	0.281	36,484,138	0.607	0.691	33.0	
2	1.36	5,587	0.062	7,830,950	0.130	0.714	34.4	
3	1.90	19,607	0.219	8,936,426	0.149	2.194	48.5	
4	0.85	× 9,203	0.103	2,977,745	0.050	3.091	55.0	
5	2.74	10,620	0.119	1,540,402	0.026	6.894	78.6	
6	2.04	19,318	0.216	2,305,750	0.038	8.378	79.9	
All subareas combined ^b	1.93	89,535	1.000	60,075,410	1.000	1.490	39.6	
95% confidence interval		<u>+</u> 15,190		<u>+</u> 14,890,902				

Table 29. -- Abundance estimates and mean size of Pacific halibut by subarea, 1990 eastern Bering Sea bottom trawl survey.

^aVariances of abundance estimates are given in Appendix E.

 $^{\rm b}{\rm differences}$ in suns of estimates and totals are due to rounding.

Figure 42. --Estimated relative size composition of Pacific halibut (sexes combined), by subarea, 1990 eastern Bering Sea bottom trawl survey.

Figure 43. --Estimated size composition of Pacific halibut (sexes combined), all subareas combined, 1990 eastern Bering Sea bottom trawl survey.

Figure 44. --Distribution and relative abundance in kg/ha of skates, 1990 eastern Bering Sea bottom trawl survey.

sculpins, 1990 eastern Bering Sea bottom trawl survey.

eelpouts, 1990 eastern Bering Sea bottom trawl survey.

CITATIONS

- Alverson, D. L., and W. T. Pereyra. 1969. Demersal fish explorations in the northeast Pacific Ocean--An evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Res. Board Can. 26:1985-2001.
- Bakkala, R. G., and K. Wakabayashi (editors). 1985. Results of cooperative U.S. -Japan groundfish investigations in the Bering Sea during May-August 1979. Int. North Pac. Fish. comm., Bull. 44, 252 p.
- Bakkala, R. G. 1988. Structure and historical changes in the groundfish complex of the eastern Bering Sea. Ph.D. Diss., Hokkaido Univ., Hakodate, Japan, 187 p.
- Geisser, S., and W. F. Eddy. 1979. A predictive approach to model selection. J. Am. Stat. Assoc. 74(365):153-160.
- Kappenman, R. F. 1992. Robust estimation of the ratio of scale parameters for positive random variables. AFSC Processed Rep. 92-01, 10 p. Alaska Fish. Sci. Cent., Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, BIN C15700, Seattle, WA 98115.
- North Pacific Fishery Management Council. 1990. Stock assessment and fishery evaluation document for groundfish resources in the Bering Sea/Aleutian Islands region as projected for 1991, 281 p. Available from North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510.
- Pereyra, W. T., J. E. Reeves, and R. G. Bakkala. 1976. Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. Processed Rep., 619 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.
- Rose, C. S., and G. E. Walters. 1990. Trawl width variation during bottom trawl surveys: causes and consequences. In L. Low (editor), Proceedings of the symposium on application of stock assessment techniques to gadids, p. 57-67. Int. North Pac. Fish. Comm., Bull. 50.
- Smith, G. B., and R. G. Bakkala. 1982. Demersal fish resources of the eastern Bering Sea: Spring 1976. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-754, 129 p.
- Stevens, B. G., and R. A. Macintosh. 1990. Report to industry on the 1990 eastern Bering Sea crab survey. AFSC Processed Rep. 90-09, 50 p. Kodiak Facility, Alaska Fish. Sci. Cent.,

Natl. Mar. Fish. Serv., P.O. Box 1638, Kodiak, AK 99615.

- von Bertalanffy, L. 1938. A quantitative theory of organic growth. Hum. Biol. 10:181-213.
- Wakabayashi, K., R. G. Bakkala, and M. S. Alton. 1985. Methods of the U.S.-Japan demersal trawl surveys. In R. G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979, p. 7-29. Int. North Pac. Fish. comm., Bull. 44.

APPENDIX A

Station Data, 1990 Eastern Bering Sea Bottom Trawl Survey

Appendix A contains station data by vessel for the 352 successfully completed standard survey stations. In using the tables the following should be noted:

- Time represents the nearest hour at the start of the tow.
- 2. Haul numbers are not always sequential because special study and unsatisfactory hauls were omitted.

List of Tables

<u>Table</u>		<u>Paqe</u>
A-l.	<u>Alaska </u>	94
A-2.	<u>Ocean Hope</u> 3	98

Haul	M/ 1	D/Yr	<u>Lati</u> Deg.	<u>tude</u> Min.	Longit Deg.	<u>tude</u> Min.	Depth (m)	Time	Duration (hr)	Distance fished (nmi)	e Stratum	<u>Tempera</u> Surface	<u>ture °C</u> Bottom
 E	61		57	21	150				0.50	1 40	10		
5	6/	5/90	57 57	21 40	159	04	48	0	0.50	1.49	10	3.3	3.3
7	6/	5/90	57	58	158	59	37	12	0.50	1.07	10	5.5	2.0
10	6/	6/90	58	15	160	11	29	īī	0.33	0.90	10	5.1	4.3
11	6/	6/90	57	60	160	12	48	13	0.50	1.48	10	3.7	2.4
12	6/ (6/90	57	41	160	16	49	16	0.50	1.52	31	3.0	2.6
13	6/	7/90	57	21	160	16	59	6	0.50	1.49	31	3.6	2.9
15	6/	7/90	56	57	160	18	66	10	0.50	1.49	31	4.4	3.4
16	6/	7/90	56	41	161	31	86	16	0.50	1.48	31	6.3	2.7
17	6/	7/90	56	60	161	33	66	19	0.50	1.51	31	3.1	2.6
18	0/ 0 د / ع	8/90 0/00	5/	21	161	32	55	6	0.50	1.50	31	4.1	2.9
20	6/ 9	0/90 0/90	5/ 57	41 60	161	20	51	12	0.50	1.4/	10	5.1	2.4
20	6/ 3	8/90	58	19	161	29	33	12	0.50	1.42	10	5.4	5.1
22	6/	9/90	58	39	162	40	24	6	0.50	1.48	10	43	4 2
23	6/	9/90	58	21	162	43	31	ğ	0.50	1.45	10	3.8	3.2
24	6/	9/90	58	01	162	46	40	12	0.50	1.54	10	2.3	1.9
25	6/	9/90	57	41	162	46	42	15	0.50	1.56	10	3.0	2.3
26	6/	9/90	57	21	162	47	46	17	0.50	1.50	10	4.3	3.1
27	6/1	0/90	57	01	162	47	59	6	0.50	1.50	31	6.0	3.0
28	6/1	0/90	56	41	162	46	71	9	0.50	1.45	31	6.9	2.3
30	6/1	0/90	56	20	162	49	79	13	0.50	1.54	31	7.0	2.1
31	6/1	0/90	56	01	162	49	77	16	0.50	1.53	31	7.2	2.7
32	6/1	0/90	55	41	162	48	46	19	0.50	1.50	10	7.1	4.3
33	6/1	7/90	55	20	164	01	/5	.,	0.50	1.34	31	6.5	4.9
34	D/1 6/1	7/90	55	41	104	01	93	11	0.33	0.94	31	0.9	3.1
35	6/1	7/00	56	20	164	01	90	15	0.50	1.50	21	10 6	2.9
30	6/1	8/00	57	20 41	163	60	10	10	0.50	1.42	10	10.0	2.9
38	$\frac{6}{12}$	8/90	57	60	164	01	49	Q Q	0.50	1.33	10	30	2.4
39	$\frac{6}{12}$	8/90	58	20	164	02	38	12	0.50	1.55	10	4 0	2.0
40	6/1	8/90	58	40	164	01	31	14	0.50	1.58	10	4.6	3.9
41	6/1	8/90	58	60	164	01	24	17	0.50	1.40	10	6.8	5.4
42	6/1	9/90	59	21	163	60	18	6	0.50	1.50	10	9.4	6.6
44	6/1	9/90	59	21	164	38	18	11	0.50	1.55	10	8.6	6.3
45	6/1	9/90	59	21	165	20	16	13	0.33	0.97	20	6.2	5.7
46	6/1	9/90	59	02	165	19	24	16	0.50	1.45	10	6.8	4.8
47	6/1	9/90	58	41	165	17	37	19	0.50	1.49	10	4.6	3.7
48	6/2	0/90	58	20	165	16	44	6	0.50	1.41	10	4.0	2.9
49	6/2	0/90	58	01	165	14	37	9	0.50	1.57	10	4.6	2.2
50	6/2	0/90	5/	41	165		59	11	0.50	1.4/	31	5.8	2.1
51	6/2	0/90	5/	20	100	10	04	14 17	0.50	1 ED	15	0.5	1.9
52	6/2	2/00) ت د	11	100	10	70	7/	0.30	1.32	21	0./	2.0
53 54	6/2	2/9U 2/0N	50 56	41 21	165	13	75 86	Q Q	0.50	1.41	21	0.0 7 N	2.1
							~~~						2 . <b>M</b>

Table A-1. --Haul data for stations sampled by the RV <u>Alaska</u> during the 1990 eastern Bering Sea bottom trawl survey.

Table A-l. --Continued.

.

Haul M	4/ D/Yr	<u>Lati</u> Deg.	tude						Distance	<b>`</b>		
55 6			Min.	Deg.	<u>tude</u> Min.	Depth (m)	Time	Duration (hr)	fished (nmi)	= Stratum	<u>Tempera</u> Surface	<u>ture ∘C</u> Bottom
35678901234566789001234567777789012345678901234 5666666666666666666666666666666666666	5/22/90 5/22/90 5/22/90 5/22/90 5/25/90 5/25/90 5/25/90 5/25/90 5/26/90 5/26/90 5/26/90 5/26/90 5/26/90 5/26/90 5/27/90 5/27/90 5/27/90 5/27/90 5/27/90 5/27/90 5/27/90 5/27/90 5/27/90 5/27/90 5/28/90 5/28/90 5/28/90 5/28/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90 5/29/90	56 55 55 55 55 55 55 55 55 55 55 55 55 5	Min. 01 41 21 41 01 41 21 40 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 60 20 20 20 20 20 20 20 20 20 20 20 20 20	Long1 Deg. 165 165 165 165 165 166 166 166 166 166	<u>ude</u> Min 1007702222222233333332555555544442037553162246 1300770214547770125455555555555555555555555555555555555	Depth (m) 93 106 110 126 80 143 132 124 123 102 84 73 68 64 59 40 31 26 29 27 22 31 38 44 59 66 871 130 135 155 37 101 80	Time 12 15 18 21 8 8 11 14 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 9 12 15 17 6 10 14 17 6 8 15 17 6 10 14 17 6 8 15 17 6 10 14 17 6 8 15 15 15 15 15 15 15 15 15 15	Duration (hr) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	fished (nmi) 1.41 1.52 0.91 1.42 1.41 1.53 1.45 1.29 1.46 1.50 1.51 1.43 1.52 1.42 1.43 1.51 1.52 1.42 1.43 1.51 1.52 1.42 1.43 1.51 1.52 1.49 1.51 1.52 1.49 1.43 1.52 1.49 1.51 1.52 1.49 1.52 1.49 1.52 1.49 1.52 1.49 1.52 1.49 1.52 1.52 1.49 1.52 1.49 1.52 1.52 1.49 1.52 1.52 1.49 1.52 1.52 1.49 1.52 1.52 1.52 1.56 1.42 1.56 1.52 1.56 1.42 1.56 1.52 1.56 1.52 1.56 1.42 1.56 1.52 1.56 1.42 1.56 1.52 1.56 1.52 1.56 1.42 1.56 1.52 1.56 1.52 1.56 1.42 1.56 1.52 1.56 1.52 1.56 1.52 1.56 1.52 1.56 1.52 1.56 1.42 1.56 1.52 1.56 1.52 1.56 1.52 1.56 1.52 1.56 1.42 1.56 1.52 1.56 1.52 1.56 1.52 1.56 1.42 1.56 1.52 1.56 1.52 1.56 1.42 1.56 1.56 1.52 1.56 1.52 1.56 1.52 1.56 1.42 1.56 1.52 1.56 1.42 1.56 1.56 1.52 1.56 1.42 1.56 1.56 1.42 1.44 1.55 1.56 1.42 1.44 1.56 1.56 1.52 1.56 1.42 1.44 1.56 1.56 1.42 1.44 1.56 1.56 1.56 1.42 1.44 1.56 1.56 1.42 1.44 1.56 1.56 1.42 1.44 1.56 1.56 1.42 1.44 1.56 1.44 1.56 1.44 1.56 1.44 1.44 1.44 1.56 1.56 1.42 1.44 1.44 1.56 1.44 1.56 1.44 1.56 1.44 1.44 1.56 1.56 1.42 1.44 1.56 1.56 1.42 1.44 1.56 1.44 1.56 1.56 1.42 1.56 1.44 1.56 1.56 1.44 1.56 1.44 1.56 1.56 1.44 1.56 1.56 1.44 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56	Stratum 31 31 50 50 31 50 50 50 50 50 50 50 31 31 31 31 31 31 31 31 31 31	$\frac{\text{Tempera}}{\text{Surface}}$ 6.9 6.6 7.1 6.5 5.7 6.8 7.5 7.4 6.5 7.0 8.9 6.0 5.6 4.1 9 6.2 5.4 4.3 4.0 3.9 5.7 7.8 7.5 7.8 7.5 7.8 7.5 7.9 8.9 7.3 7.9 8.9 7.3	ture •C Bottom 3.2 3.9 3.9 4.4 5.3 3.4 5.3 3.4 5.3 3.9 2.6 2.0 1.9 2.6 2.0 1.9 3.6 5.5 5.1 3.6 5.5 5.1 3.6 5.5 5.1 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.7 3.6 3.7 3.7 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7

Table A-1. --Continued.

Hau]	M/	D/Yr	<u>Lati</u> Deg.	<u>tude</u> Min.	Longi Deg.	<u>tude</u> Min.	Depth (m)	Time	Duration (hr)	Distance fished (nmi)	e Stratum	<u>Temperat</u> Surface	<u>ture ∘C</u> Bottom
$\begin{array}{c} 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 111\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 120\\ 121\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 129\\ 130\\ 131\\ 132\\ 133\\ 134\\ 135\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 147\\ 148\\ 149\\ 150\\ 151\\ \end{array}$	7/ 7/ 7/ 7/ 7/ 7/ 7/ 7/ 7/ 7/ 7/ 7/ 7/ 7	3/90 4/90 4/90 4/90 5/90 5/90 5/90 5/90 6/90 6/90 6/90 6/90 6/90 6/90 6/90 6	589 599 599 50 60 599 55 55 55 55 55 55 55 55 55 55 55 55	40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 20 20 20 20 20 20 20 20 2	169 169 169 169 169 169 169 170 170 170 170 170 170 170 170 170 170	13 11 14 12 20 93 33 30 93 18 74 30 91 51 04 22 23 33 44 55 1520477560 10 10 51 04 22 33 34 75 1520477560 10 10 10 51 00 10 51 51 51 51 51 51 51 51 51 51 51 51 51	$\begin{array}{c} 62\\ 51\\ 37\\ 44\\ 42\\ 62\\ 66\\ 66\\ 77\\ 73\\ 77\\ 71\\ 79\\ 87\\ 10\\ 109\\ 97\\ 53\\ 87\\ 77\\ 56\\ 59\\ 64\\ 93\\ 102\\ 106\\ 109\\ 97\\ 55\\ 66\\ 93\\ 102\\ 106\\ 106\\ 109\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106$	$\begin{array}{c} 16\\ 6\\ 9\\ 11\\ 14\\ 17\\ 6\\ 9\\ 12\\ 14\\ 16\\ 9\\ 9\\ 8\\ 9\\ 12\\ 15\\ 17\\ 6\\ 9\\ 12\\ 15\\ 17\\ 6\\ 8\\ 10\\ 12\\ 15\\ 6\\ 17\\ 0\\ 7\\ 9\\ 12\\ 15\\ 17\\ 6\\ 8\\ 10\\ 12\\ 15\\ 6\\ 17\\ 0\\ 7\\ 9\\ 12\\ 15\\ 17\\ 6\\ 8\\ 10\\ 12\\ 15\\ 6\\ 17\\ 0\\ 7\\ 9\\ 12\\ 15\\ 17\\ 6\\ 8\\ 10\\ 12\\ 15\\ 17\\ 6\\ 8\\ 10\\ 12\\ 15\\ 17\\ 6\\ 8\\ 10\\ 12\\ 15\\ 17\\ 6\\ 10\\ 12\\ 15\\ 17\\ 6\\ 10\\ 12\\ 15\\ 17\\ 6\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 17\\ 10\\ 12\\ 15\\ 10\\ 12\\ 15\\ 10\\ 12\\ 15\\ 10\\ 12\\ 15\\ 10\\ 12\\ 15\\ 10\\ 12\\ 15\\ 10\\ 12\\ 15\\ 10\\ 12\\ 15\\ 10\\ 12\\ 10\\ 12\\ 10\\ 10\\ 12\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\$	$\begin{array}{c} 1.55\\ 1.49\\ 1.49\\ 1.51\\ 1.52\\ 1.57\\ 1.56\\ 1.52\\ 1.58\\ 1.51\\ 1.47\\ 1.40\\ 1.45\\ 1.48\\ 1.47\\ 1.45\\ 1.48\\ 1.47\\ 1.68\\ 1.62\\ 1.62\\ 1.69\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\ 1.68\\$	41 41 20 20 20 41 41 41 41 41 41 41 41 41 41 41 41 41	6 - 88826456110418880000089899351667678278 - 67628	$\begin{array}{c} 0.8\\ 1.3\\ 2.0\\ 2.7\\ 0.0\\ -0.9\\ -1.3\\ -1.0\\ 2.5\\ -0.2\\ -0.5\\ 9\\ 4.2\\ 3.6\\ 3.5\\ 3.6\\ 4.7\\ 2.2\\ 1.6\\ -0.4\\ -1.0\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.5\\ -1.$
153 154	7/7/	13/90 14/90	58 57	20 58	172 172	57 54	108 110	19 6	0.25 0.50	0.69 1.52	61 61	8.6 9.0	1.8

Table A-1. --Continued.

· ·

155 7/14/90 57 41 172 47 117 9 0.25 0.72 61 156 7/14/90 57 21 172 43 117 12 0.28 0.90 61	8.9 8.8 8.9 9 2	2.5
1577/14/90565817235123150.250.78611587/14/90564217234134170.170.52611607/22/90564317150121180.501.48611617/22/90566017201117210.331.00611627/23/9058201733311580.330.93611637/23/90584217412139110.331.16611647/23/90584217414144140.501.21611657/23/90584217337126170.331.05611657/24/9059021742212670.401.27611677/24/9059021742712190.250.79621687/24/90600117427115120.331.07621707/24/90601017421101160.501.58431717/25/9060221744310270.331.04411827/29/90602117602121170.501.52611847/30/905959 <td>7.5 7.1 8.4 8.3 8.3 8.5 7.4 9.6 1 9.0 9.1 9.2 9.2 9.2 9.2 9.2 9.0 9.0 10.0 10.0</td> <td>3.3 3.8 3.7 2.4 2.5 4.7 -0.1 -0.4 1.7 7.8 2.5 4.7 2.5 4.7 -0.1 1.7 2.5 1.7 4.1 1.8 2.5 1.7 4.1 1.8 7 0.7 1.7 1.7 2.1 2.1 1.7 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1</td>	7.5 7.1 8.4 8.3 8.3 8.5 7.4 9.6 1 9.0 9.1 9.2 9.2 9.2 9.2 9.2 9.0 9.0 10.0 10.0	3.3 3.8 3.7 2.4 2.5 4.7 -0.1 -0.4 1.7 7.8 2.5 4.7 2.5 4.7 -0.1 1.7 2.5 1.7 4.1 1.8 2.5 1.7 4.1 1.8 7 0.7 1.7 1.7 2.1 2.1 1.7 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

Haul	M/	D/Yr	<u>Lati</u> Deg.	<u>tude</u> Min.	Longii Deg.	<u>tude</u> Min.	Depth (m)	Time	Duration (hr)	Distanc fished (nm)	e Stratum	<u>Tempera</u> Surface	<u>ture •C</u> Bottom
1	6/	4/90	57	22	158	25	33	11	0.50	1.61	10	4.9	
2	6/	4/90	57	40	158	22	35	14	0.50	1.48	10	4.4	
3	6/	4/90	57	60 20	158	20	35	16	0.50	1.4/	10	4.4	
4	6/	5/90		20	150	17 28	22	14	0.40	1.10	10		
6	6/	5/90	58	01	159	39	42	16	0.50	1.51	10	7.3	
7	6/	6/90	57	41	159	38	49	7	0.50	1.53	10	4.5	
8	6/	6/90	57	21	159	41	57	9	0.50	1.52	10	3.3	
9	6/	6/90	56	58	159	44	55	13	0.50	1.52	10	4.4	
10	6/	6/9U	50	42	159	49	3/	15	0.50	1.52	10	0.1	
12	0/ 6/	7/90	56	41 22	160	23 01	57	1/	0.50	1.50	10	4.0	
13	6/	7/90	56	21	161	31	66	10	0.50	1.44	10	6.2	
14	6/	7/90	56	41	160	60	68	16	0.50	1.51	31	5.1	
15	6/	8/90	57	01	160	57	64	7	0.50	1.52	31	4.0	
16	6/	8/90	57	24	160	56	62	10	0.50	1.54	31	4.0	
1/	6/	8/90	5/	43	160	53	5/	12	0.50	1.52	31 10	2.0	
10	6/	8/90	58 58	U3 17	160	52 52	44	15	0.50	1.00	10	0.5	
20	6/	9/90	58	16	162	04	48	6	0.50	1.45	10	5.5	
21	6/	9/90	58	01	162	07	38	9	0.50	1.53	10	2.6	
22	6/	9/90	57	41	162	09	48	11	0.50	1.53	10	2.9	
23	6/	9/90	57	21	162	10	51	14	0.50	1.56	10	4.9	
24	6/	9/90	50	60	162	10	60 71	10	0.50	1.55	31	5.9	
25	6/	10/90	56	42 21	162	14	82	13	0.50	1.52	31	9.5	
28	6/	10/90	56	01	162	17	73	16	0.50	1.64	31	7.5	
29	6/	11/90	55	25	163	29	64	7	0.50	1.36	31	6.9	3.9
30	6/	14/90	55	41	163	25	86	12	0.50	1.32	31	6.5	3.0
31	6/:	14/90	56	01	163	25	90	14	0.50	1.45	31	6.6	3.0
32	6/	14/90	56	21	163	25	84	1/	0.50	1.50	31	5.8 6.4	2.0
33	0/. 6/	17/90	56 56	41 11	163	20 50	75	6	0.50	1.58	31	6.9	2.0
36	6/	17/90	56	60	163	34	68	10	0.50	1.57	31	7.0	2.5
37	6/	17/90	57	04	163	60	68	12	0.50	1.50	31	6.9	2.2
38	6/	17/90	57	22	163	56	60	14	0.50	1.65	31	6.6	2.8
39	6/	17/90	57	25	163	25	53	17	0.50	1.64	10	5.7	2.8
40	6/	18/90	57	41	163	22	48	/	0.50	1.44	10	5.0	3.0
4⊥ ∧2	0/ c/	18/00	5/ 50	58 21	103	23	44	9 12	0.50	1.70	10	<b>4</b> 1	3.U 4 N
42 17	6/	18/00	58	42	163	23	31	14	0.50	1.50	10	5.9	5.5
44	6/	18/90	58	56	163	20	26	16	0.50	1.45	10	7.0	5.5
46	6/	19/90	58	59	164	35	27	15	0.50	1.55	10	6.5	5.2
47	6/	1 <b>9/9</b> 0	58	41	164	39	37	18	0.50	1.65	10	4.5	
48	6/3	20/90	58	19	164	38	46	6	0.50	1.53	10	4.5	
49	6/3	20/90	58	01	164	38	46	9	0.50	1.54	10	4.5	3.5

Table A-2. --Haul data for stations sampled by the FV <u>Ocean</u> <u>Hope</u> 3 during the 1990 eastern Bering Sea bottom trawl survey.

Table A-2. --Continued.

Hau]	M/ D/Yr	<u>Lati</u> Deg.	<u>tude</u> Min.	<u>Longi</u> Deg.	<u>tude</u> Min.	Depth (m)	Time	Duration (hr)	Distance fished (nm)	e Stratum	<u>Tempera</u> Surface	<u>ture ∘C</u> Bottom
Hau ] 50 51 52 53 55 56 78 90 61 22 53 66 66 67 89 70 1 72 73 74 56 77 89 80 1 82 88 88 89 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 92 90 1 90 1	<pre>M/ D/Yr 6/20/90 6/20/90 6/20/90 6/22/90 6/22/90 6/22/90 6/22/90 6/22/90 6/25/90 6/25/90 6/25/90 6/26/90 6/26/90 6/26/90 6/26/90 6/26/90 6/26/90 6/27/90 6/27/90 6/27/90 6/27/90 6/27/90 6/27/90 6/28/90 6/28/90 6/28/90 6/28/90 6/28/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/29/90 6/30/90 6/30/90 6/30/90 7/ 1/90 7/ 1/90 7/ 1/90</pre>	Latg. D 5776666555555555555555555555555555555	tude         40         40         40         40         40         50         50         40         40         40         40         40         50         50         40         40         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50 <td>Longi Deg. 164 164 164 164 164 164 164 165 165 165 165 165 165 165 165 165 165</td> <td>tude         3333333334479770901557756818666651108965219973308           1000000000000000000000000000000000000</td> <td>Depth (m) 5366717790597 10401331191937368455443792462993104451468715571577145915293104451451137145915293108</td> <td>Time 11 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 11 14 17 6 9 12 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 7 9 13 16 7 16 7 16 7 11 14 17 7 9 13 16 7 16 7 11 14 7 7 9 13 16 7 7 9 13 16 7 7 9 13 16 7 7 9 13 16 7 7 9 13 16 7 7 15 16 17 17 16 9 11 14 7 7 9 13 16 7 7 15 16 7 15 16 7 17 16 7 17 16 7 17 16 7 17 16 7 16 7 17 16 7 17 16 7 17 16 7 16 7 16 17 16 7 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17</td> <td>Duration (hr) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5</td> <td>fished (nm) 1.69 1.54 1.54 1.54 1.55 1.46 1.51 1.52 1.54 1.51 1.50 1.56 1.61 1.53 1.63 1.63 1.63 1.53 1.53 1.53 1.55 1.55 1.55 1.55 1.5</td> <td>Stratum 10 31 31 31 31 31 31 31 31 31 31</td> <td>$\frac{\text{Tempera}}{\text{Surface}} \\ 5.7 \\ 6.8 \\ 7.0 \\ 7.1 \\ 7.0 \\ 7.1 \\ 7.0 \\ 7.1 \\ 7.0 \\ 7.1 \\ 7.0 \\ 7.1 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\$</td> <td><u>ture •C</u> Bottom 2.810276460 2.2.76460 </td>	Longi Deg. 164 164 164 164 164 164 164 165 165 165 165 165 165 165 165 165 165	tude         3333333334479770901557756818666651108965219973308           1000000000000000000000000000000000000	Depth (m) 5366717790597 10401331191937368455443792462993104451468715571577145915293104451451137145915293108	Time 11 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 12 14 17 6 9 11 14 17 6 9 12 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 6 9 11 14 17 7 9 13 16 7 16 7 16 7 11 14 17 7 9 13 16 7 16 7 11 14 7 7 9 13 16 7 7 9 13 16 7 7 9 13 16 7 7 9 13 16 7 7 9 13 16 7 7 15 16 17 17 16 9 11 14 7 7 9 13 16 7 7 15 16 7 15 16 7 17 16 7 17 16 7 17 16 7 17 16 7 16 7 17 16 7 17 16 7 17 16 7 16 7 16 17 16 7 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17	Duration (hr) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	fished (nm) 1.69 1.54 1.54 1.54 1.55 1.46 1.51 1.52 1.54 1.51 1.50 1.56 1.61 1.53 1.63 1.63 1.63 1.53 1.53 1.53 1.55 1.55 1.55 1.55 1.5	Stratum 10 31 31 31 31 31 31 31 31 31 31	$\frac{\text{Tempera}}{\text{Surface}} \\ 5.7 \\ 6.8 \\ 7.0 \\ 7.1 \\ 7.0 \\ 7.1 \\ 7.0 \\ 7.1 \\ 7.0 \\ 7.1 \\ 7.0 \\ 7.1 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ 7.0 \\ $	<u>ture •C</u> Bottom 2.810276460 2.2.76460 
93 94 95 96 97	7/ 2/90 7/ 2/90 7/ 2/90 7/ 2/90 7/ 2/90 7/ 2/90	56 56 57 57 57	51 60 10 21 32	168 168 168 168 168	38 23 37 25 41	97 82 77 75 73	10 12 13 15 17	0.30 0.30 0.30 0.30 0.50	0.93 1.03 1.09 1.08 1.62	32 32 32 32 32 42	7.9 7.9 8.1 8.3 8.0	2.7 2.5 2.6 3.7 2.5

Table A-2. --Continued.

Haul	M/	D/Yr	<u>Lati</u> Deg.	<u>tude</u> Min.	<u>Longi</u> Deg.	<u>tude</u> Min.	Depth (m)	Time	Duration (hr)	Distance fished (nm)	e Stratum	<u>Tempera</u> Surface	<u>ture ∘C</u> Bottom
$\begin{array}{c} 98\\ 99\\ 100\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 111\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 120\\ 121\\ 122\\ 123\\ 126\\ 127\\ 128\\ 129\\ 130\\ 131\\ 132\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 145\\ 146\end{array}$	$\frac{1}{1}$	3/90 3/90 3/90 3/90 3/90 3/90 3/90 4/90 5/90 5/90 5/90 5/90 5/90 5/90 5/90 6/90 6/90 6/90 6/90 6/90 6/90 6/90 6	577888999999998877777775555555555555555	421124024522041119000011005424102400112009100211081	168 168 168 168 168 168 168 168 168 169 169 169 169 169 169 169 169 169 169	24223334405554444545842012470591582694619984127	71 70 43 64 88 73 55 56 66 87 77 77 76 55 23 77 21 59 26 88 89 86 77 77 71 44 26 68 86 80 87 77 71 44 26 68 86 80 87 77 71 19 86 88 80 87 77 71 14 46 26 68 88 77 77 77 76 55 23 77 21 59 26 88 80 87 77 77 76 66 88 77 77 77 66 88 80 77 77 77 66 88 87 77 77 76 66 88 77 77 77 76 55 23 77 21 59 26 88 80 87 77 77 76 66 88 77 77 76 66 88 77 77 77 76 88 88 98 77 77 71 66 88 80 87 77 77 76 88 88 98 77 77 71 66 88 88 77 77 77 76 88 88 98 77 77 71 76 66 88 88 88 77 77 77 76 88 88 98 89 77 77 71 66 88 88 77 77 76 66 88 88 77 77 76 66 88 88 77 77 77 76 88 88 88 98 89 77 77 71 66 88 88 88 98 77 77 71 66 88 88 98 77 77 71 66 88 88 98 77 77 71 66 88 88 98 77 77 71 66 88 88 98 77 77 71 66 88 88 98 77 77 71 66 88 88 98 77 77 71 66 88 88 88 97 77 77 16 66 88 88 88 80 87 77 77 16 88 88 80 87 77 77 16 88 88 80 87 77 77 16 88 88 80 87 77 77 77 77 77 77 77 77 77 77 77 77	7 9 12 15 17 6 9 11 14 16 6 9 11 14 16 6 8 7 10 24 9 6 9 12 14 7 7 9 12 14 7 6 9 11 4 16 6 10 13 16 7 9 12 14 7 7 9 12 14 7 6 9 11 4 16 6 10 13 16 7 9	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	$\begin{array}{c} 1.59\\ 1.61\\ 1.69\\ 1.66\\ 1.53\\ 1.65\\ 1.55\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\ 1.65\\$	42 42 42 42 20 20 20 20 20 41 11 11 41 44 42 22 20 20 20 20 20 20 20 20 20 20 20 20	7.7.7.6.4.4.5.4.6.7.7.6.7.6.7.7.7.8.9.8.8.8.8.8.9.8.8.9.8.8.9.8.8.9.8.9	$\begin{array}{c} 2.4 \\ \\ \\ \\ \\ \\ \\ \\ $

Table A-2. --Continued.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Haul	M/ D/Yr	<u>Lati</u> Deg.	<u>tude</u> Min	<u>Longi</u> . Deg.	<u>tude</u> Min.	Depth (m)	Time	Duration (hr)	Distance fished (nm)	e Stratum	<u>Tempera</u> Surface	<u>ture_∘C</u> Bottom
180       7/31/90       59       21       176       21       139       10       0.25       0.80       61       9.1         189       7/31/90       59       21       176       23       139       12       0.50       1.50       61       9.2         190       7/31/90       59       41       176       33       139       14       0.50       1.70       61       9.6         191       7/31/90       60       02       176       44       144       17       0.50       1.50       61       10.1	147 148 149 150 151 152 153 154 158 159 160 161 162 163 164 165 166 167 168 169 170 179 180 181 182 183 185 186 187 188 189 190 191	7/13/90 7/13/90 7/13/90 7/14/90 7/14/90 7/14/90 7/14/90 7/14/90 7/23/90 7/23/90 7/23/90 7/23/90 7/23/90 7/23/90 7/24/90 7/24/90 7/24/90 7/24/90 7/24/90 7/24/90 7/25/90 7/25/90 7/25/90 7/25/90 7/25/90 7/25/90 7/25/90 7/25/90 7/25/90 7/29/90 7/30/90 7/30/90 7/30/90 7/31/90 7/31/90 7/31/90 7/31/90	59 59 59 59 59 59 59 59 59 59 59 59 59 5	31 20 01 40 60 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 22 40 20 22 40 20 22 40 20 22 40 20 22 40 20 22 40 20 22 40 20 22 40 20 22 40 20 22 40 20 22 40 20 20 20 20 20 20 20 20 20 20 20 20 20	172 172 172 172 172 172 172 172 173 173 173 173 173 173 173 173 173 173	48 32 28 23 17 16 10 06 16 21 25 30 49 54 11 58 09 10 31 28 21 09 03 14 21 23 16 10 09 03 44 31 23 34 49 31 23 34 31 23 34 31 23 34 31 23 34 31 23 34 31 23 34 31 23 34 31 25 34 34 31 25 34 34 31 25 34 34 31 25 34 34 31 25 34 34 31 25 34 34 31 25 34 34 31 25 34 34 31 25 34 34 31 31 31 31 31 31 31 31 31 31 31 31 31	95 91 101 104 104 106 110 144 124 148 117 119 113 106 108 99 91 90 84 77 110 113 123 130 137 135 174 139 139 139 144	$\begin{array}{c} 12\\ 14\\ 17\\ 6\\ 9\\ 12\\ 14\\ 17\\ 8\\ 10\\ 13\\ 15\\ 7\\ 10\\ 12\\ 14\\ 16\\ 7\\ 10\\ 12\\ 16\\ 18\\ 7\\ 10\\ 12\\ 16\\ 18\\ 7\\ 10\\ 12\\ 14\\ 17\end{array}$	$\begin{array}{c} 0.50\\ 0.50\\ 0.30\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\$	1.41 $1.45$ $0.96$ $1.48$ $0.74$ $0.69$ $0.72$ $0.57$ $0.90$ $1.40$ $1.40$ $0.70$ $0.60$ $0.80$ $1.40$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$ $1.50$	43 43 41 61 61 61 61 61 61 61 61 61 61 61 61 61	8.8 8.7 8.8 9.0 9.5 9.5 7.6 8.5 8.5 7.5 8.5 7.5 8.1 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	$\begin{array}{c} -0.3\\ -0.3\\ 0.3\\ -9.0\\ -1.5\\ 2.4\\ 2.7\\ 3.6\\ 3.2\\ 3.6\\ 3.9\\ 2.4\\ 1.5\\ 0.7\\ -0.5\\ -0.7\\ -0.5\\ -0.7\\ -0.9\\ -1.2\\ 2.3\\ 2.6\\ 2.3\\ 2.6\\ 2.3\\ 2.6\\ 2.3\\ 2.6\\ 2.3\\ 2.6\\ 2.3\\ 2.6\\ 2.3\\ 2.6\\ 1.4\\ 1.3\end{array}$

# APPENDIX B

Schematic Diagram of Trawl Gear

# List of Figures

Figure

Page

B-1.	Schematic diagram of trawl used during the	
	1990 eastern Bering Sea bottom trawl survey	103



Figure B-1.--Schematic diagram of trawl used during the 1990 eastern Bering Sea bottom trawl survey.

### APPENDIX C

# List of Species Encountered

Appendix C contains a computer listing of all fish and invertebrate species taken during the 1990 eastern Bering Sea bottom trawl survey.

## List of Tables

Table	2	Page
C-l.	Fish species encountered during the 1990 eastern Bering Sea bottom trawl survey	105
C-2.	Invertebrate species encountered during the 1990 eastern Bering Sea bottom trawl survey	108
Table C-1.--Fish species encountered during the 1990 eastern Bering Sea bottom trawl survey.

Common name	Scientific name
Family Rajidae Skate unident.	Rajidae unident.
Family Clupeidae Pacific herring	<u>Clupea pallasii</u>
Family Osmeridae Capelin Smelt unident. Rainbow smelt Eulachon	<u>Mallotus villosus</u> Osmeridae <u>Osmerus mordax</u> <u>Thaleichthys pacificus</u>
Family Gadidae Arctic cod Saffron cod Pacific cod Walleye pollock	<u>Boreogadus saida Eleginus gracilis Gadus macrocephalus Theragra chalcogramma</u>
Family Scorpaenidae Rougheye rockfish Pacific ocean perch Northern rockfish Rockfish unident.	<u>Sebastes</u> <u>aleutianus</u> <u>Sebastes</u> <u>alutus</u> <u>Sebastes</u> polyspinis <u>Sebastes</u> sp.
Family Anaplopomatidae Sablefish	<u>Anoplopoma fimbria</u>
Family Hexagrammidae Kelp greenling Whitespotted greenling Atka mackerel	<u>Hexagrammos</u> <u>decagrammus</u> <u>Hexagrammos</u> <u>stelleri</u> Pleurogrammus monopterygius
Family Cottidae <u>Artediellus</u> unident. Crested sculpin Spinyhead sculpin Antlered sculpin <u>Enophrys</u> unident. Armorhead sculpin <u>Gymnocanthus</u> unident. Arctic staghorn sculpin Red Irish lord Yellow Irish lord	Artediellus sp. Blepsias bilobus Dasycottus setiger Enophrys diceraus Enophrys lucasi Enophrys sp. Gymnocanthus galeatus Gymnocanthus sp. Gymnocanthus tricuspis Hemilepidotus hemilepidotus Hemilepidotus jordani

#### Common name

Family Cottidae (cont'd) Butterfly sculpin Irish lord unident. Bigmouth sculpin Icelus unident. Spatulate sculpin Thorny sculpin Pacific staghorn sculpin Blackfin sculpin Malacocottus unident. Darkfin sculpin Plain sculpin Great sculpin Myoxocephalus unident. Tadpole sculpin Ribbed sculpin Speckled sculpin <u>Triglops</u> unident.

Family Agonidae Poacher unident. Aleutian alligatorfish Bering poacher Tubenose poacher Dragon poacher Sturgeon poacher Sawback poacher

- Family Cyclopteridae <u>Careproctus</u> unident. Snailfish unident. <u>Liparis</u> unident.
- Family Bathymasteridae Searcher Northern ronquil
- Family Zoarcidae Shortfin eelpout Wattled eelpout Marbled eelpout
- Family Stichaeidae Decorated warbonnet Bearded warbonnet Daubed shanny

Scientific name

<u>Hemilepidotus</u> papilio <u>Hemilepidotus</u> sp. <u>Hemitripterus</u> <u>bolini</u> Icelus sp. <u>Icelus</u> <u>spatula</u> <u>Icelus</u> spiniger Leptocottus armatus Malacocottus kincaidi Malacocottus sp. Malacocottus zonurus <u>Myoxocephalus jaok</u> Myoxocephalus polyacanthocephalus Myoxocephalus sp. Psychrolutes paradoxus <u>Triglops</u> pingeli Triglops scepticus Triglops sp.

Agonidae <u>Aspidophoroides bartoni</u> <u>Occella dodecaedron</u> <u>Pallasina barbata</u> <u>Percis japonica</u> <u>Podothecus acipenserinus</u> <u>Sarritor frenatus</u>

<u>Careproctus</u> sp. Cyclopteridae (Liparidinae) <u>Liparis</u> sp.

<u>Bathymaster</u> <u>signatus</u> <u>Ronquilus</u> <u>jordani</u>

Lycodes	<u>brevipes</u>
Lycodes	palearis
Lycodes	raridens

<u>Chirolophis decoratus</u> <u>Chirolophis snyderi</u> <u>Lumpenus maculatus</u>

Common name	Scientific name
Family Stichaeidae (cont'd) Snake prickleback Whitebarred prickleback Prickleback unident.	<u>Lumpenus saqitta</u> <u>Poroclinus</u> <u>rothrocki</u> Stichaeidae
Family Anarhichadidae Bering wolffish	Anarhichas orientalis
Family Zaproridae Prowfish	Zaprora silenus
Family Trichodontidae Pacific sandfish	Trichodon trichodon
Family Ammodytidae Pacific sand lance	Ammodytes hexapterus
Family Pleuronectidae Kamchatka flounder Arrowtooth flounder Rex sole Flathead sole Bering flounder Pacific halibut Dover sole Starry flounder Yellowfin sole Rock sole Butter sole Longhead dab Alaska plaice Sakhalin sole Greenland turbot	Atheresthes evermanni Atheresthes stomias Errex zachirus Hippoglossoides elassodon Hippoglossoides robustus Hippoglossus stenolepis Microstomus pacificus Platichthys stellatus Pleuronectes asper Pleuronectes bilineatus Pleuronectes jsolepis Pleuronectes proboscideus Pleuronectes guadrituberculatus Pleuronectes sakhalinensis Reinhardtius hippoglossoides

.

Table C-2.--Invertebrate species encountered during the 1990 eastern Bering Sea bottom trawl survey.

Common name	Scientific name
Phylum Porifera	
Sponge unident.	Porifera
Phylum Coelenterata	
Sea anemone unident.	Actinaria (order)
Sea raspberry	Eunephthya rubiformis
Sea raspberry unident.	Eunephthya sp.
Hydroid unident.	Hydrozoa (class)
Kamchatka coral	Paragorgia arborea
Sea pen unident.	Pennatulacea (order)
Jellyfish unident.	Scyphozoa (class)
<u>Tealia</u> unident.	<u>Tealia</u> sp.
Phylum Ctenophora	
Comb jelly unident	Ctopophora
comb Jerry unidence.	ссепорнога
Phylum Mollusca	
Gastropods	
Keeled aforia	<u>Aforia circinata</u>
Alaska volute	Artomelon stearnsii
Northern beringius	<u>Beringius</u> <u>beringii</u>
Kennicott's beringius	<u>Beringius</u> <u>kennicottii</u>
<u>Beringius</u> unident.	<u>Beringius</u> sp.
Stimpson's beringius	<u>Beringius</u> <u>stimpsoni</u>
Boreotrophon unident.	<u>Boreotrophon</u> sp.
Angled whelk	<u>Buccinum angulosum</u>
Sinuous whelk	<u>Buccinum plectrum</u>
Polar whelk	<u>Buccinum</u> polare
Ladder (silky) whelk	<u>Buccinum</u> <u>scalariforme</u>
Buccinum solenum	<u>Buccinum</u> <u>solenum</u>
Buccinum unident.	<u>Buccinum</u> sp.
Thin-ribbed whelk	<u>Colus herendeeni</u>
<u>Colus</u> unident.	<u>Colus</u> sp.
Thick-ribbed whelk	<u>Colus spitzbergensis</u>
Great slippershall	<u>Crepidula</u> grandis
Slipper shell	<u>Crepidula</u> sp.
Oregon triton	<u>Fusitriton</u> <u>oregonensis</u>
<u>rusitriton</u> unident.	<u>rusitriton</u> sp.
Shall unident.	Gastropoda unident.
Aleutian moonshall	Natica aleutica
Artic moonsnall	Natica Clausa
Rusty moonsnall	Natica russa
<u>Nautica</u> unident.	<u>Nautica</u> sp.

Common name

Phylum Mollusca (cont'd) Gastropods (cont'd) Little neptune Northern neptune Lyre whelk Helmet whelk Pribilof whelk <u>Neptunea</u> unident. Fat whelk Nudibranch unident. Kroyer's plicifus <u>Plicifusus</u> unident. Pale moonsnail Polinices unident. Snail (gastropod) eggs Rosy tritonia Volute whelk Warped whelk Fragile whelk Tulip whelk Volutopsius unident. Shouldered whelk

> Bivalves Bivalve unident. Cockle unident. Chlamys unident. Hairy cockle Nuttal cockle Clinocardium unident. Many-rib cyclocardia Arctic hiatella Macoma unident. Artic surfclam Macromeris unident. Northern horsemussel Discordant mussel Mussel unident. Nuculana unident. Weathervane scallop Scallop unident. Alaska falsejingle Greenland cockle Broad cockle

<u>Neptunea</u> <u>borealis</u> <u>Neptunea</u> heros Neptunea lyrata Neptunea magma Neptunea pribiloffensis Neptunea sp. <u>Neptunea</u> <u>ventricosa</u> Onchidoridae (family) <u>Plicifusus</u> kroyeri <u>Plicifusus</u> sp. Polinices pallidus Polinices sp. Snail (gastropod) eggs <u>Tritonia</u> diomedea <u>Volutopsius</u> <u>castaneus</u> <u>Volutopsius</u> deformis <u>Volutopsius</u> <u>fragilis</u> Volutopsius middendorffii Volutopsius sp. Volutopsius stefanssoni Bivalvia (class)

Cardiidae (family) <u>Chlamys</u> sp. Clinocardium ciliatum <u>Clinocardium</u> <u>nuttalii</u> Clinocardium sp. Cyclocardia crebricostata <u>Hiatella</u> <u>arctica</u> <u>Macoma</u> sp. <u>Macromeris</u> polynyma Macromeris sp. Modiolus modiolus <u>Musculus</u> discors Mytilidae (family) Nuculana sp. Patinopectin caurinus Pectinidae (family) Pododesmus macroschisma Serripes groenlandicus <u>Serripes</u> laperousii

#### Scientific name

Common name	Scientific name
Phylum Mollusca (cont'd)	
Bivalves (cont'd)	
<u>Serripes</u> unident.	<u>Serripes</u> sp.
Northern razor clam	<u>Siliqua alta</u>
Pacific razor clam	<u>Siliqua patula</u>
<u>Siliqua</u> unident.	<u>Siliqua</u> sp.
Tellin unident.	<u>Tellina</u> sp.
Boreal tridonta	<u>Tridonta borealis</u>
Cephalopods	
<u>Gonatus</u> unident.	<u>Gonatus</u> sp.
Octopus unident.	Octopodidae (family)
Pacific bobtail squid	<u>Rossia</u> <u>pacifica</u>
Squid unident.	Teuthoidea (order)
Phylum Annelida	
Sea mouse unident.	Aphroditidae (family)
Depressed scale worm	<u>Eunoe depressa</u>
Giant scale worm	<u>Eunoe nodosa</u>
<u>Eunoe</u> unident.	<u>Eunoe</u> sp.
Scale worm unident.	Polynoidae (family)
Tube worm unident.	Tube worm unident.
Phylum Arthropoda	
Giant barnacle	<u>Balanus</u> <u>evermanni</u>
<u>Balanus</u> unident.	<u>Balanus</u> sp.
Cirripedia unident.	Cirripedia (class)
Barnacle unident.	Thoracica (order)
Crab	
Dungeness crab	Cancer magister
Oregon rock crab	<u>Cancer</u> <u>oregonensis</u>
Broad snow crab	<u>Chionoecetes</u> <u>bairdi</u>
Hybrid snow crab	Chionoecetes hybrid
Narrow snow crab	Chionoecetes opilio
Horsehair crab	Erimacrus isenbeckii
Soft crab	<u>Hapalogaster</u> <u>grebnitzkii</u>
Circumboreal toad crab	Hyas <u>coarctatus</u>
North Pacific toad crab	Hyas Ivratus
<u>Hyas</u> unident.	<u>Hyas</u> sp.
Longhorned decorator crab	<u>uregonia</u> gracilis
Hermit crab unident.	Paguridae (family)
Alaskan hermit crab	Pagurus <u>ocnotensis</u>
Fuzzy hermit crab	<u>Pagurus trigonocheirus</u>
Red king crab	<u>Paralitnodes</u> <u>camtschatica</u>

Common name Scientific name Phylum Arthropoda (cont'd) Crab (cont'd) Blue king crab Paralithodes platypus Helmet crab Telmessus cheiragonus Shrimp Artic argid Argis dentata <u>Arqis</u> <u>lar</u> Northern argid Argis unident. <u>Arqis</u> sp. Common crangon <u>Crangon</u> <u>communis</u> Ridged crangon <u>Crangon</u> <u>dalli</u> Crangon unident. Crangon sp. Crangonid shrimp unident. Crangonidae (family) Eualus unident. Eualus sp. Short-scaled evalid Eualus suckleyi Hippolytid shrimp unident. Hippolytidae (family) Northern (pink) shrimp <u>Pandalus</u> borealis Humpy shrimp Pandalus goniurus Tank shrimp Sclerocrangon boreas Phylum Sipuncula Sipunculid worm unident. Sipuncula (phylum) Phylum Bryozoa Bryozoan unident. Bryozoa (phylum) Leafy bryozoan Flustra serrulata Phylum Echinodermata Holothuroidea Cucumaria unident. <u>Cucumaria</u> sp. Sea cucumber unident. Holothuroidea (class) Redscaled sea cucumber Psolus sp. Echinoidea Sand dollar unident. Clypeasteroida (order) Echinarachnius parma Parma sand dollar Sea urchin unident. Sea urchin unident. Strongylocentrotus droebachiensis Green sea urchin Asteroidea Purple-orange sea star <u>Asterias</u> <u>amurensis</u> Asterias unident. <u>Asterias</u> sp. Starfish unident. Asteroidea (subclass) <u>Ceramaster</u> japonicus Red bat star <u>Ceramaster patagonicus</u> Orange bat star

### Common name

Scientific name

Phylum Echinodermata (cont'd) Asteroidea (cont'd) Rose sea star Crossaster unident. Common mud star Ctenodiscus unident. Pincushion sea star Giant sea star Mottled sea star Henricia unident. Tumid sea star Arctic sea star Knobby six-rayed sea star Leptasterias unident. Blackspined sea star Obscure sea star Pteraster unident. Cushion sea star Ophiuroidea Basket star Notched brittlestar Brittlestarfish unident. Phylum Chordata Aplidium unident. Tunicate unident. Sea onion

Sea onion unident. Compound ascidian unident. Sea peach Sea peach unident. Sea potato Salps unident.

Crossaster papposus <u>Crossaster</u> sp. Ctenodiscus crispatus <u>Ctenodiscus</u> sp. <u>Diplopteridae</u> <u>multipes</u> Evasterias echinosoma <u>Evasterias</u> troschelii Henricia sp. <u>Henricia</u> <u>tumida</u> <u>Leptasterias</u> <u>arctica</u> <u>Leptasterias</u> polaris Leptasterias sp. Lethasterias nanimensis <u>Pteraster</u> <u>obscurus</u> <u>Pteraster</u> sp. <u>Pteraster</u> tesselatus

<u>Gorgonocephalus caryi</u> <u>Ophiura sarsi</u> Ophiuroidea (subclass)

<u>Aplidium</u> sp. Ascidian unident. <u>Boltenia ovifera</u> <u>Boltenia</u> sp. Compound ascidian unident. <u>Halocynthia aurantium</u> <u>Halocynthis</u> sp. <u>Styela rustica</u> Thaliacea (class)

## APPENDIX D

Rank Order of Relative Abundance of Fish and Invertebrates Appendix D ranks all fish and invertebrates caught during the 1990 eastern Bering Sea bottom trawl survey by descending CPUE.

# List of Tables

<u>Table</u>				<u>Page</u>
D-l.	CPUE	rank	order	 114

Table D-1. --Rank order of fish and invertebrate taxa by relative abundance (kg/ha) from the 1990 eastern Bering Sea bottom trawl survey.

RANK	SPECIES	MEAN CPUE (KG/HA)	VARIANCE	90% CONFIDENCE	LIMITS	PROPORTION	CUMULATIVE PROPORTION	NAME	
1	21740	165,16666	487.355	128,56650	201.76682	0.42053784	0.42053784		
Ż	10210	47.12750	10.468	41.76340	52.49161	0.11999334	0.54053118	YELLOWFIN SOLE	
3	10260	30,40698	3.793	27.17795	33.63602	0.07742051	0.61795169	ROCK SOLE	
4	68580	16.46350	2.630	13.77497	19.15202	0.04191841	0.65987010	NARROW SNOW CRAB(=TANNER CRAB(OPILIO))	
5	21720	15.29105	1.317	13.38814	17.19395	0.03893318	0.69880328	PACIFIC COD	
6	81742	14.85911	1.590	12.76847	16.94975	0.03783341	0.73663669	PURPLE-ORANGE SEASTAR	
7	10130	13.52395	1.479	11.50760	15.54029	0.03443389	0.77107058	FLATHEAD SOLE	
8	00400	12.36692	2.079	9.97634	14.75751	0.03148795	0.80255853	SKATE UNIDENT.	
9	10285	11.34643	1.182	9.54415	13.14870	0.02888962	0.83144814	ALASKA PLAICE	
10	69010	10.21797	0.593	8.94090	11.49504	0.02601641	0.85746456	HERMIT CRAB UNIDENT.	
11	10110	9.09279	0.663	7.74294	10.44264	0.02315154	0.88061610	ARROWTOOTH FLOUNDER	
12	68560	3.92219	0.163	3.25274	4.59165	0.00998646	0.89060255	BROAD SNOW CRAB (=TANNER CRAB(BAIRDI))	
13	80000	3.62545	0.466	2.49375	4.75715	0.00923090	0.89983346	STARFISH UNIDENT.	
14	83020	3.58651	0.561	2.34422	4.82879	0.00913175	0.90896521	GORGONOCEPHALUS CARYI	
15	71820	2.59325	0.361	1.59755	3.58895	0.00660278	0.91556799	PRIBILOF WHELK	
16	98082	2.45468	0.264	1.60296	3.30639	0.00624996	0.92181794	SEA POTATO	
17	71884	2.37441	0.107	1.83309	2.91572	0.00604558	0.92786352	NEPTUNEA HEROS	щ
18	10120	1.93224	0.027	1.65775	2.20672	0.00491975	0.93278327	PACIFIC HALIBUT	ų.
19	21375	1.58458	0.048	1.22278	1.94637	0.00403456	0.93681783	MYOXOCEPHALUS SP.	4
20	69322	1.49251	0.120	0.91829	2.06673	0.00380015	0.94061798	RED KING CRAB	
21	43000	1.03177	0.034	0.72661	1.33693	0.00262703	0.94324501	SEA ANEMONE UNIDENT.	
22	71870	0.88523	0.021	0.64453	1.12592	0.00225391	0.94549892	LYRE WHELK	
23	81741	0.85503	0.127	0.26494	1.44511	0.00217702	0.94767594	ASTERIAS SP.	
24	40500	0.82772	0.020	0.59373	1.06171	0.00210749	0.94978343	JELLYFISH UNIDENT.	
25	21348	0.82498	0.079	0.35810	1.29187	0.00210053	0.95188395	BUTTERFLY SCULPIN	
26	21371	0.80007	0.043	0.45562	1.14451	0.00203708	0.95392104	PLAIN SCULPIN	
27	21370	0.77186	0.045	0.42119	1.12253	0.00196527	0.95588630	GREAT SCULPIN	
28	80590	0.76281	0.028	0.48768	1.03794	0.00194223	0.95782853	LEPTASTERIAS POLARIS	
29	83000	0.73816	0.063	0.32074	1.15557	0.00187945	0.95970798	BRITTLESTARFISH UNIDENT.	
30	20040	0.71636	0.005	0.59584	0.83688	0.00182396	0.96153194	STURGEON POACHER	
51	10112	0.70780	0.010	0.54252	0.8/309	0.00180217	0.96333411	KAMCHAIKA FLOUNDER	
32	91000	0.69486	0.045	0.34245	1.04726	0.001/6920	0.96510331	SPONGE UNIDENT.	
33	71882	0.04302	0.012	0.43994	0.02011	0.00103723	0.900/4034	FAI WHELK	
34	98100	0.50946	0.017	0.29453	0.72439	0.00129/16	0.96803769	SEA ONION UNIDENT.	
35	69520	0.40249	0.014	0.26321	0.001//	0.00117756	0.96921526	HYAS SP.	
36	10140	0.41699	0.004	0.31548	0.51849	0.00106171	0.97027696	BERING FLOUNDER	
37	50000	0.41292	0.087	0.00000	0.90119	0.00105130	0.9/132833	PULTCHAETE WORM UNIDENT.	
38	71500	0.40567	0.011	0.23040	0.5/693	0.00102780	0.9/233012	SNAIL UNIDENT.	
39	10211	0.40139	0.004	0.30167	0.50111	0.00102200	0.9/33/812	LUNGHEAD DAB	
40	24185	0.38/04	0.002	0.31336	0.430/1	0.00098545	0.9/43035/	WATTLEV EELPUUT	
41	71800	0.37290	0.032	0.07157	0.0/031	0.00074740	0.9/031505		
42	83320	0.33/26	0.030	0.0/15/	0.04296	0.00090964	U.Y/02220/	UPHIUKA SAKSI	
45	21420	0.34790	0.007	0.21112	0.40469	0.00088581	0.97710848	BIGMOUTH SCULPIN	
44	082//	V.33U35	0.007	U.19214	V.40856	0.00084112	U.Y//Y4Y60	CIRCUMBUREAL IDAD CRAB (=HTAS CRAB (ROUND SPINED))	

RANK	SPECIES	MEAN CPUE (KG/HA)	VARIANCE	90% CONFIDENCE	LIMITS	PROPORTION	CUMULATIVE PROPORTION	NAME	
45	10220	0.32474	0.007	0.18745	0.46203	0.00082684	0.97877643	STARRY FLOUNDER	
46	69323	0.32017	0.009	0.16044	0.47990	0.00081520	0.97959163	BLUE KING CRAB	
47	10115	0.30414	0.009	0.14962	0.45867	0.00077440	0.98036603	GREENLAND TURBOT (=GREENLAND HALIBUT)	
48	24184	0.29330	0.004	0.18863	0.39798	0.00074679	0.98111282	MARBLED EELPOUT (PREV. SPARSE TOOTHED LYCOD)	
49	81780	0.29067	0.019	0.06176	0.51959	0.00074009	0.98185291	COMMON MUD STAR	
50	98000	0.27282	0.022	0.02877	0.51687	0.00069465	0.98254756	TUNICATE UNIDENT.	
51	10200	0.26695	0.019	0.03545	0.49845	0.00067969	0.98322725	SNAIL (GASTROPOD) EGGS	
52	10200	0.25591	0.003	0.16698	0.34485	0.00065159	0.98387884	REX SOLE	
22	79010	0.25427	0.017	0.03587	0.47268	0.00064742	0.98452626	CTENODISCUS SP.	
55	70010	0.24900	0.015	0.04876	0.45044	0.00063552	0.98516178	OCTOPUS UNIDENT.	
56	72500	0.24/15	0.003	0.15287	0.34144	0.00062929	0.98579107	BUCCINUM SP.	
57	98200	0.24420	0.002	0.10029	0.32012	0.00062178	0.98641285	OREGON TRITON	
58	21347	0.24237	0.000	0.09214	0.39204	0.00061/16	0.98703001	SEA PEACH UNIDENT.	
59	24191	0.22037	0.002	0.13339	0.20030	0.00056110	0.98759111	YELLOW IRISH LORD	
60	72752	0 19683	0.001	0.14000	0.20900	0.00053240	0.98812351	SHORTFIN EELPOUT	
61	43020	0.19513	0.006	0.06736	0.23304	0.00030113	0.90002400	LADDER WHELK (PREV. SILKY WHELK)	
62	80020	0.18152	0.003	0 08896	0.32271	0.00047084	0.90912130		
63	68578	0.16762	0.002	0.08751	0 24773	0.00048218	0.90930307	EVASIEKIAS ELHINUSUMA	щ
64	41201	0.16682	0.002	0.09327	0.24036	0 00042070	0.000/3520	SEA DASDEEDAY	j,a –
65	20720	0.15543	0.009	0.00000	0.31146	0.00039574	0.99083093	SEADCHED	ບາ
66	22200	0.15392	0.001	0.10989	0.19794	0.00039190	0.99122283	SUATI FISH INTOENT	
67	85201	0.14893	0.012	0.00000	0.32860	0.00037919	0.99160202	CUCUMARIA FALLAY	
68	21735	0.12309	0.001	0.05892	0.18726	0.00031341	0.99191542	SAFFRON COD	
69	79020	0.12258	0.015	0.00000	0.32411	0.00031210	0.99222753	ROSSIA PACIFICA	
70	82510	0.11527	0.001	0.05143	0.17911	0.00029349	0.99252102	GREEN SEA URCHIN	
71	80200	0.10756	0.001	0.06211	0.15301	0.00027385	0.99279487	LETHASTERIAS NANIMENSIS	
72	95000	0.10680	0.003	0.02038	0.19322	0.00027192	0.99306679	BRYOZOAN UNIDENT.	
75	98105	0.10440	0.004	0.00123	0.20756	0.00026581	0.99333260	BOLTENIA OVIFERA	
74	23041	0.09438	0.001	0.04250	0.14626	0.00024031	0.99357291	CAPELIN	
15	21313	0.08945	0.000	0.05281	0.12609	0.00022775	0.99380066	GYMNOCANTHUS SP.	
<u>/6</u>	71755	0.08921	0.002	0.01986	0.15856	0.00022714	0.99402780	WARPED WHELK	
11	/1/50	0.08524	0.002	0.01474	0.15573	0.00021703	0.99424483	VOLUTOPSIUS SP. (=PYRULOFUSUS SP.)	
78	08/81	0.08433	0.003	0.00000	0.17350	0.00021472	0.99445955	TELMESSUS CRAB	
19	72743	0.07857	0.000	0.04794	0.10880	0.00019954	0.99465909	BUCCINUM ANGULOSUM	
80	21310	0.07590	0.003	0.00000	0.16730	0.00019743	0.99485652	ARMORHEAD SCULPIN	
97	82500	0.07500	0.000	0.04632	0.10528	0.00019300	0.99504952	PACIFIC HERRING	
81	62300	0.07300	0.001	0.02815	0.12184	0.00019096	0.99524048	SEA URCHIN UNIDENT.	
8/	68500	0.07297	0.001	0.01293	0.15500	0.00018578	0.99542626	HORSEHAIR CRAB	
85	66031	0.00041	0.000	0.04972	0.08/11	0.00017419	0.99560046	TANNER CRAB (HYBRID)	
86	98205	0.00011	0.000	0.04495	0.09129	0.0001/343	0.99577388	NORTHERN SHRIMP (=PINK SHRIMP=NORTHERN PINK SHRIMP)	
87	75285	0.06307	0.005	0.00000	0.15215	0.00016249	0.99595637	SEA PEACH	
88	72501	0 06115	0.003	0.00000	0.13149	0.00010039	0.99009696	UKEENLAND COCKLE	
89	50010	0 05915	0.003	0.02312	0.07710	0.000155/0	0.99625266	FUSTIRITON SP.	
	20010	0.00710	0.005	0.00000	V. 13721	0.00012000	0.99640326	TUBE WORM UNIDENT.	

Table D-1. --Continued.

_____

RANK	SPECIES	MEAN CPUE (KG/HA)	VARIANCE	90% CONFIDENCE	LIMITS	PROPORTION	CUMULATIVE PROPORTION	NAME	
90	85200	0.05798	0.001	0.01574	0.10023	0.00014763	0.99655088	CUCUMARIA SP.	
91	71756	0.05493	0.002	0.00000	0.12856	0.00013985	0.99669074	FRAGILE WHELK	
92	20322	0.05199	0.001	0.00258	0.10140	0.00013237	0.99682311	BERING WOLFFISH	
93	71764	0.04685	0.000	0.02078	0.07291	0.00011928	0.99694239	TULIP WHELK	
94	65203	0.04666	0.002	0.00000	0.12211	0.00011879	0.99706118	GIANT BARNACLE	
95	23010	0.04611	0.000	0.01976	0.07246	0.00011740	0.99717858	EULACHON	
96	72755	0.04538	0.000	0.02661	0.06414	0.00011553	0.99729411	POLAR WHELK	
97	98310	0.04272	0.000	0.02743	0.05801	0.00010877	0.99740288	APLIDIUM SP.	
98	/2/51	0.04191	0.000	0.00913	0.07470	0.00010671	0.99750960	SINUOUS WHELK (PREV. LYRE WHELK)	
100	21932	0.03905	0.000	0.01604	0.06206	0.00009943	0.99760903	WHITESPOTTED GREENLING	
100	2/001	0.03831	0.000	0.00396	0.07106	0.00009805	0.99770708	SEA MOUSE UNIDENT.	
107	24001 45100	0.03721	0.001	0.00000	0.09890	0.00009474	0.99780182	PROWFISH RADNAGLE LINIDENT	
102	21/38	0.03034	0.001	0.00000	0.07412	0.00009303	0.77/0740/	BARNAGLE UNIDENI.	
104	22201	0 03202	0.000	0.01767	0.04907	0.00008489	0.9979797970	ITORNT SCULPIN	
105	20006	0 03114	0.000	0.00709	0.05014	0.000000000000	0.99800000	CAUDACY DOACHED	
106	21390	0.02942	0.000	0.01736	0.04148	0.000077491	0 99821775	SDINYHFAD SCHIDIN	
107	80594	0.02764	0.000	0.00464	0.05065	0.00007039	0.99828814	I FPTASTERIAS ARCTICA	
108	71835	0.02694	0.000	0.01359	0.04030	0.00006860	0.99835674	NEPTUNEA BOREALIS	H
109	21446	0.02689	0.000	0.01822	0.03555	0.00006846	0.99842519	ICELUS SP.	1
110	21725	0.02673	0.001	0.00000	0.06632	0.00006807	0.99849326	ARCTIC COD	01
111	68510	0.02392	0.000	0.01266	0.03517	0.00006090	0.99855416	LONGHORNED DECORATOR CRAB (=DECORATOR CRAB)	
112	10270	0.02127	0.000	0.00013	0.04241	0.00005415	0.99860831	BUTTER SOLE	
113	43040	0.02125	0.000	0.00812	0.03438	0.00005410	0.99866241	TEALIA SP.	
114	56311	0.02090	0.000	0.00704	0.03477	0.00005322	0.99871563	GIANT SCALE WORM	
115	21592	0.02077	0.000	0.00153	0.04000	0.00005288	0.99876851	PACIFIC SANDFISH	
116	69090	0.02026	0.000	0.00623	0.03429	0.00005158	0.99882009	PAGURUS OCHOTENSIS	
117	81355	0.01976	0.000	0.00747	0.03205	0.00005032	0.99887041	PTERASTER OBSCURUS	
118	71769	0.01973	0.000	0.00671	0.03275	0.00005023	0.99892064	BERINGIUS SP.	
119	82730	0.01921	0.000	0.00000	0.04555	0.00004892	0.99896956	SAND DOLLAR UNIDENT,	
120	/1//2	0.01898	0.000	0.00684	0.03113	0.00004833	0.99901790	BERINGIUS BERINGII	
121	7/120	0.01000	0.000	0.00000	0.03021	0.00004675	0.99900403	SKATE EGG CASE UNIDENT.	
122	74120	0.01749	0.000	0.00307	0.03130	0.00004452	0.99910915	WEATHERVANE SCALLUP	
123	95210	0.01/47	0.000	0.00910	0.02572	0.00004433	0.99915549	HELMEI WHELK	
124	7/000	0.01032	0.000	0.00000	0.04137	0.00004136	0.77717304	PJULUS SP.	
125	81310	0.01162	0,000	0.00000	0.02161	0.00004018	0.00026/.80	DIEDACTED CD	
127	65201	0 01005	0.000	0 00000	0.02715	0 00002787	0.00020267	RALANIC CD	
128	21350	0.01062	0.000	0.00578	0.01547	0 00002705	0.00031072	TRIGIORS SP	
120	75110	0.01034	0.000	0.00550	0.01517	0.00002632	0 00036606	MACTROMERIS SP (=SPISHIA SP )	
130	30420	0.01007	0.000	0.00000	0.02366	0.00002563	0.99937167	NORTHERN ROCKFISH	
131	21355	0.00945	0.000	0.00632	0.01258	0.00002405	0,99939572	RIBBED SCULPIN	
132	85000	0.00931	0.000	0.00039	0.01822	0.00002369	0.99941942	SEA CUCUMBER UNIDENT.	
133	20061	0.00928	0.000	0.00400	0.01456	0.00002363	0.99944305	BERING POACHER	
134	66570	0.00928	0.000	0.00603	0.01253	0.00002362	0.99946667	ARGIS SP.	
135	30040	0.00804	0.000	0.00000	0.01857	0.00002048	0.99948715	ROCKFISH UNIDENT.	

.

		MEAN CPUE		90%			CUMULATIVE	
RANK	SPECIES	(KG/HA)	VARIANCE	CONFIDENCE	LIMITS	PROPORTION	PROPORTION	NAME
136	22219	0.00797	0.000	0.0000	0.01851	0.00002029	0.99950745	CAREPROCTUS SP.
137	80595	0.00794	0.000	0.0000	0.01814	0.00002023	0.99952767	LEPTASTERIAS SP.
138	81315	0.00768	0.000	0.00170	0.01365	0.00001954	0.99954722	PTERASTER TESSELATUS
139	71010	0.00685	0.000	0.00306	0.01064	0.00001744	0.99956466	NUDIBRANCH UNIDENT.
140	66045	0.00677	0.000	0.00384	0.00969	0.00001723	0.99958188	HUMPY SHRIMP
141	20510	0.00664	0.000	0.00127	0.01202	0.00001692	0.99959880	SABLEFISH
142	42000	0.00658	0.000	• 0.00000	0.01534	0.00001676	0.99961556	SEA PEN UNIDENT.
143	21341	0.00658	0.000	0.00000	0.01598	0.00001675	0.99963232	DARKFIN SCULPIN
144	75111	0.00651	0.000	0.00250	0.01053	0.00001659	0.99964890	ARCTIC SURFCLAM (PREV. ALASKA SURF CLAM)
145	81095	0.00634	0.000	0.00006	0.01262	0.00001615	0.99966506	ROSE SEA STAR
146	65000	0.00589	0.000	0.00000	0.01204	0.00001499	0.99968004	CIRRIPEDIA (CLASS)
147	40011	0.00557	0.000	0.00000	0.01164	0.00001418	0.99969422	HYDROID UNIDENT.
148	95030	0.00534	0.000	0.00080	0.00989	0.00001361	0.99970783	LEAFY BRYOZOAN
149	72063	0.00495	0.000	0.00237	0.00752	0.00001259	0.99972042	KEELED AFORIA
150	30060	0.00480	0.000	0.00000	0.01140	0.00001221	0.99973263	PACIFIC OCEAN PERCH
151	98300	0.00460	0.000	0.00028	0.00891	0.00001170	0.99974434	COMPOUND ASCIDIAN UNIDENT.
152	71575	0.00457	0.000	0.00136	0.00778	0.00001164	0.99975598	POLINICES SP.
153	74562	0.00453	0.000	0.00000	0.01024	0.00001152	0.99976750	DISCORDANT MUSSEL
154	74050	0.00439	0.000	0.00000	0.01080	0.00001118	0.99977868	MUSSEL UNIDENT.
155	23000	0.00424	0.000	0.00055	0.00793	0.00001080	0.99978948	SMELT UNIDENT.
156	71891	0.00393	0.000	0.00170	0.00615	0.00001000	0.99979948	PLICIFUSUS KROTERI
157	74655	0.00321	0.000	0.00000	0.00705	0.00000817	0.99980765	MANT-RIB CTCLOCARDIA
158	23808	0.00273	0.000	0.00185	0.00360	0.00000695	0.99981460	SNAKE PRICKLEBACK
159	68040	0.00272	0.000	0.00092	0.00455	0.00000694	0.99982154	UREGUN RUCK LRAB
100	00011	0.002/0	0.000	0.00127	0.00412	0.00000687	0.99982840	NUKINEKN AKGIU
101	81360	0.00265	0.000	0.00000	0.00703	0.00000674	0.99983514	DIPLOPIERASIER MULTIPES
102	20000	0.00255	0.000	0.00000	0.00391	0.0000048	0.99904102	FUALMER UNIVENT.
103	10212	0.00247	0.000	0.00024	0.00400	0.00000625	0.99904700	SERRIPES SP.
145	71525	0.00238	0.000	0.00033	0.00440	0.00000579	0.99903371	SANNALIN SULE
165	64502	0.00211	0.000	0.00000	0.00436	0.00000000000	0.99903929	CRANCON CD
147	44570	0.00204	0.000	0.00072	0.003/5	0.00000520	AX0A8000 0	DIDCED CRANCON
167	68020	0.00203	0.000	0.00001	0.00141	0.00000510	0.00087676	
140	76100	0.00200	0.000	0.00000	0 00487	AA\00000 0	0.000870/2	
170	56300	0.00176	0.000	0.000007	0 00361	0.00000400	0.00088385	SCALE UOPM INIDENT
171	20050	0.00174	0.000	0.00007	0.00341	0.00000445	0.00088820	ALEUTIAN ALLICATOPEISN
172	7/081	0.00165	0.000	0.00000	0.00233	0.00000433	0.00080261	
173	74980	0.00159	0.000	0,00000	0 00406	0.00000421	0 00080645	
176	71710	0.00154	0.000	0.00000	0 00356	0 000000000	0.000000138	
175	75201	0,00149	0.000	0.00000	0.00396	0.00000380	0.99990418	TELLINA SP
176	21921	0.00149	0.000	0.00000	0.00365	0.00000378	0.99990796	ATKA MACKEREI
177	71760	0.00145	0.000	0,00000	0.00385	0.00000369	0.99991165	VOLUTE WHELK
178	71030	0.00130	0,000	0.00013	0.00248	0.00000332	0.99991497	ROSY TRITONIA (PREV_DIOMEDES' TRITON)
179	21441	0.00127	0.000	0.00066	0.00187	0.00000322	0.99991819	SPATULATE SCULPIN
180	69086	0.00126	0.000	0.00000	0.00320	0.00000321	0.99992141	FUZZY HERMIT CRAB

117

Table D-1. --Continued.

RANK	SPECIES	MEAN CPUE (KG/HA)	VARIANCE	90% CONFIDENCE I	LIMITS	PROPORTION	CUMULATIVE PROPORTION	NAME	
181	71890	0.00119	0.000	0.00000	0.00315	0.00000302	0.99992443	PLICIFUSUS SP.	
182	<b>94000</b>	0.00115	0.000	0.00000	0.00241	0.00000292	0.99992735	SIPUNCULID WORM UNIDENT.	
183	75240	0.00111	0.000	0.00000	0.00229	0.00000283	0.99993018	MACOMA SP.	
184	23805	0.00110	0.000	0.00050	0.00171	0.00000281	0.99993300	DAUBED SHANNY	
185	71726	0.00108	0.000	0.00000	0.00272	0.00000274	0.99993574	THICK-RIBBED WHELK	
186	56312	0.00105	0.000	0.00001	0.00209	0.00000266	0.99993840	DEPRESSED SCALE WORM	
187	74982	0.00103	0.000	0.00000	0.00261	0.00000263	0.99994103	NUTTAL COCKLE	
188	66515	0.00102	0.000	0.00043	0.00161	0.00000260	0.99994363	COMMON CRANGON	
189	10180	0.00101	0.000	0.00001	0.00201	0.00000257	0.99994620	DOVER SOLE	
190	21339	0.00099	0.000	0.00000	0.00217	0.00000252	0.99994872	MALACOCOTTUS SP.	
191	41582	0.00097	0.000	0.0000	0.00258	0.00000247	0.99995119	PARAGORGIA ARBOREA	
192	23800	0.00094	0.000	0.00033	0.00156	0.00000240	0.99995359	PRICKLEBACK UNIDENT.	
193	71580	0.00087	0.000	0.00004	0.00171	0.00000223	0.99995582	PALE MOONSNAIL	
194	20202	0.00085	0.000	0.00027	0.00143	0.00000217	0.99995798	PACIFIC SAND LANCE	
195	74983	0.00080	0.000	0.00000	0.00174	0.00000205	0.99996003	HAIRY COCKLE	
196	79000	0.00077	0.000	0.00000	0.00163	0.00000196	0.99996199	SQUID UNIDENT.	
197	79200	0.00077	0.000	0.00001	0.00152	0.00000196	0.99996395	GONATUS SP.	
198	75286	0.00073	0.000	0.00000	0.00160	0.00000187	0.99996581	BROAD COCKLE	ц
199	45000	0.00068	0.000	0.00000	0.00151	0.00000174	0.99996755	COMB JELLY UNIDENT.	4
200	66580	0.00068	0.000	0.00021	0.00114	0.00000172	0.99996928	ARCTIC ARGID	8
201	56310	0.00065	0.000	0.00000	0.00141	0.00000166	0.99997094		
202	74060	0.00058	0.000	0.00000	0.00155	0.00000165	0.99997257	NUKIHEKN HUKSEMUSSEL (PKEV. HUKSE MUSSEL)	_
203	20050	0.00058	0.000	0.00000	0.00155	0.00000148	0.99997403	LRUSSASTER SP.	•
204	30030	0.00058	0.000	0.00000	0.00133	0.00000148	0.99997000	ROUGHETE RUCKFISH	
203	73600	0.00055	0.000	0.00000	0.00134	0.00000148	0.999977701	ALASKA FALSEJINGLE (PREV. KUCK JINGLE)	
200	71040	0.00055	0.000	0.00000	0.00143	0.00000137	0.77777040	DED IDICU LODD	
207	21340	0.00034	0.000	0.00000	0.00123	0.00000137	0.777777777		
200	21933	0.00032	0.000	0.00000	0.00130	0.00000133	0.77770107	AELF GREENLING Aecodated Uaddownet	
209	23041	0.00043	0.000	0.00000	0.00120	0.00000113	0.99990224	LEISTER SCHLDIN	
210	72756	0.00043	0.000	0.00000	0.00112	0.00000110	0.00008//1	DUCCINUM COLENIM	
212	80540	0.00042	0.000	0.00000	0 00082	0.00000107	0.00008548	HENDICIA CD	
213	71776	0 00042	0.000	0.00002	0 00108	0 00000104	0.00008651	REPINCING STIMPSONI	
214	71537	0.00041	0.000	0.00005	0 00075	0 00000104	0.00008753		
215	80720	0.00040	0,000	0.00000	0 000075	0 000000002	0 00008852	DED RAT CTAD	
216	20002	0 00032	0.000	0.00000	0 00085	0.00000000	0.00008034	NPACON DOACHER	
217	74104	0.00030	0.000	0.00000	0.00080	0.00000077	0.99999011	CHI AMYS SP	
218	71681	0.00027	0.000	0.00000	0.00071	0.00000068	0.99999078	GREAT SLIPPERSNALL	
210	21388	0.00026	0.000	0.00000	0.00056	0.00000065	0 00000144	ANTI FRED SCHIPIN	
220	74641	0 00024	0.000	0 00000	0.00062	0 00000061	0 00000205		
221	74311	0.00024	0.000	0.00000	0.00064	0.00000061	0.99999266	ARCTIC HIATELLA	
222	75266	0.00019	0.000	0.00001	0.00037	0.00000049	0.99999315	PACIFIC RAZOR (PREV. PACIFIC RAZOR CLAM)	
223	80546	0.00019	0.000	0.00000	0.00044	0.00000048	0.99999363	HENRICIA TUMIDA	
224	69316	0.00019	0.000	0.00000	0.00045	0.00000047	0.99999410	HAPALOGASTER GREBNITZKII	
225	43082	0.00017	0.000	0.00000	0.00045	0.0000044	0.99999454	CRIBRINOPSIS FERNALDI	

226 72700 0.00015 0.000 0.00000 0.00011 0.000000 0.00000000000000000000000000000000000	RANK	SPECIES	MEAN CPUE (KG/HA)	VARIANCE	90% CONFIDENCE	LIMITS	PROPORTION	CUMULATIVE PROPORTION	NAME	
236 20001 0.00009 0.000 0.00000 0.000021 0.00000024 0.99999813 TUBENOSE POACHER   237 21394 0.00009 0.000 0.00000 0.00022 0.99999836 TADPOLE SCULPIN   238 20702 0.00009 0.000 0.00000 0.00023 0.09999881 TRISH LORD   239 21342 0.00009 0.000 0.00000 0.00023 0.099999881 IRISH LORD   240 82740 0.00006 0.0000 0.00017 0.0000016 0.99999877 PARMA SAND DOLLAR   241 21331 0.00006 0.0000 0.00013 0.0000016 0.999999977 ARTEDIELLUS SP.   242 75267 0.00006 0.0000 0.00016 0.99999957 ARCHAR AZOR (PREV. NORTHERN RAZOR CLAM)   243 75264 0.00006 0.0000 0.00014 0.99999957 ARCTIC STAGHORN SCULPIN L   245 72420 0.00003 0.0000 0.00008 0.99999973 BEARDED WARBONNET   246 23843 0.00003 0.000 0.00008 0.99999978 EVASTERIAS TROS	226 227 228 229 230 231 232 233 234 235	72790 98070 21340 23850 23055 71770 21354 80730 74435 21397	0.00015 0.00015 0.00015 0.00015 0.00014 0.00014 0.00012 0.00012 0.00010 0.00009	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00041 0.00039 0.00039 0.00032 0.00038 0.00038 0.00033 0.00033 0.00026 0.00027 0.00025	0.00000039 0.00000038 0.00000037 0.00000037 0.00000037 0.00000035 0.00000031 0.00000030 0.00000026	0.999999493 0.99999531 0.99999568 0.99999605 0.99999642 0.99999642 0.99999642 0.99999708 0.99999708 0.99999765 0.99999765	ALASKA VOLUTE SALPS UNIDENT. BLACKFIN SCULPIN WHITEBARRED PRICKLEBACK RAINBOW SMELT BERINGIUS KENNICOTTII SPECTACLED SCULPIN ORANGE BAT STAR NUCULANA SP. CRESTED SCULPIN	
	236 237 238 239 240 241 242 243 244 245 246 247 248 249 250	20001 21394 20702 21342 82740 21331 75267 75264 21315 72420 23843 80015 66170 66150 21384	0.00009 0.0009 0.0009 0.00009 0.00006 0.00006 0.00006 0.00006 0.00005 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00021 0.00024 0.00023 0.00017 0.00013 0.00016 0.00016 0.00016 0.00008 0.00008 0.00008 0.00008 0.00008	0.00000024 0.0000023 0.0000022 0.00000022 0.00000016 0.00000016 0.00000015 0.00000015 0.00000014 0.00000008 0.0000008 0.0000008 0.0000008 0.0000008 0.0000008	0.99999813 0.99999836 0.99999858 0.99999881 0.99999887 0.99999997 0.99999999 0.99999995 0.99999957 0.99999957 0.99999957 0.99999981 0.99999981 0.99999981 0.99999981 0.99999981	TUBENOSE POACHER TADPOLE SCULPIN NORTHERN RONQUIL IRISH LORD PARMA SAND DOLLAR ARTEDIELLUS SP. ALASKA RAZOR (PREV. NORTHERN RAZOR CLAM) SILIQUA SP. ARCTIC STAGHORN SCULPIN BOREOTROPHON SP. (FORMERLY TROPHONOPSIS SP.) BEARDED WARBONNET EVASTERIAS TROSCHEL11 EUALUS SP. HIPPOLYTID SHRIMP UNIDENT. ENOPHRYS SP.	119

## APPENDIX E

Abundance Estimates for Principal Fish Species Appendix E presents estimates of catch-per-unit-effort (CPUE), population numbers and biomass for the principal fish species. Estimates of variance and confidence intervals do not incorporate variation associated with fishing power corrections or measurements of effort. CPUE is measured in kilograms (kg) and numbers (no.) per hectare. Estimates are given separately for each of the 10 geographic strata used in the analysis; estimates for each of the six standard subareas are presented as subtotals of the component strata. Stratum codes correspond to subareas as follows:

<u>Subarea</u>	<u>Stratum</u>
1	10
2	20
3	31 32 (Pribilof Island high density)
4	41 42 (Pribilof Island high density) 43 (St. Matthew Island high density)
5	50
б	61 62 (St. Matthew Island high density)

# List of Tables

<u>Table</u>		<u>Page</u>
E-l.	Walleye pollock	122
E-2.	Pacific cod	124
E-3.	Yellowfin sole	126
E-4.	Rock sole	128
E-5.	<u>Hippoglossoides</u> spp	130
Е-б.	Alaska plaice	132
E-7.	Greenland turbot	134
E-8.	Atheresthes spp	136
E-9.	Pacific halibut	138

,

Stratum	Total hauls	Hauls with catch	Hauls with no.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no./ha)	Varianc <i>e</i> mean CPUE (no./ha)
10	58	53	53	53	15.79	0.131767E+02	49.65	0.216912E+03
20	31	31	31	30	6.26	0.104807E+01	18.22	0.195147E+02
31 32 Subtotal	68 8 76	67 8 75	67 8 75	67 8 75	86.27 240.75 99.39	0.171878E+04 0.552755E+04 0.147907E+04	108.30 311.69 125.58	0.231213E+04 0.109112E+05 0.201475E+04
41 42 43	44 31 19	44 30 19 93	44 30 19 93	44 30 18 92	66.37 150.23 68.20 85.40	0.417925E+03 0.189892E+04 0.554308E+03 0.256753E+03	122.40 163.76 84.13 124 12	0.862000E+03 0.160389E+04 0.688982E+03 0.397667E+03
50	26	25	25	25	146.92	0.319642E+04	167.49	0.519061E+04
61 62 Subtotal	60 7 67	57 7 64	57 7 64	56 7 63	532.92 451.95 527.42	0.103018E+05 0.233371E+05 0.905653E+04	848.68 715.33 839.61	0.227058E+05 0.561743E+05 0.199832E+05
Total	352	341	341	338	165.17	0.487357E+03	252.20	0.996521E+03

Table E-l -- CPUE, population, and biomass estimates for walleye pollock.

POPULATION

CPUE

<b>C t a a b a</b>	Denviletien	Variance	Eff. deg.	95% Conf	idence limits
Stratum			Treedom	Lower-	
10	386,666,332	0.131533942E+17	57.00	156,928,568	616,404,096
20	74,758,265	0.328475593E+15	30.00	37,749,270	111,767,260
31	1,023,712,307	0.206592849E+18	67.00	115,723,144	1,931,701,471
32	273.482.707	0.840012646E+16	7.00	56,725,245	490,240,169
Subtotal	1,297,195,014	0.214992976E+18	71.43	371,548,450	2,222,841,579
41	767,497,348	0.338914727E+17	43.00	396,018,492	1,138,976,204
42	393,209,404	0.924696393E+16	30.00	196,848,366	589,570,443
43	177.576.708	0.306965615E+16	18.00	61,171,900	293,981,515
Subtotal	1,338,283,460	0.462080928E+17	70.97	909, 150, 294	1,767,416,625
50	649,720,531	0.781111257E+17	25.00	73,984,156	1,225,456,905
61	7.479.718.041	0.176368858E+19	59.00	4,822,244,854	10,137,191,227
62	459.858.720	0.232151932E+17	6.00	87,020,762	832,696,677
Subtotal	7,939,576,760	0.178690377E+19	60.46	5,266,074,362	10,613,079,159
Total	11,686,200,362	0.213969783E+19	85.20	8,772,848,914	14,599,551,810

1	2	3
-	~	-

Table E-	Continued.
----------	------------

- BIOMASS	S
-----------	---

		Variance	Eff. deg.	95% Confidence limits		
Stratum	Biomass (t)	biomass	freedom	Lower	Upper	
10	122,938	0.799026694E+09	57.00	66,315	179,561	
20	25,667	0.176413683E+08	30.00	17,090	34,243	
31	815,440	0.153575568E+12	67.00	32,580	1,598,300	
32	211,240	0.425544151E+10	7.00	56,963	365,518	
Subtotal	1,026,680	0.157831010E+12	70.25	233,446	1,819,915	
41	416,146	0.164316581E+11	43.00	157,486	674,806	
42	360,729	0.109478898E+11	30.00	147,070	574,388	
43	143,952	0.246963666E+10	18.00	39,542	248,362	
Subtotal	920,826	0.298491846E+11	83.95	576,670	1,264,983	
50	569,943	0.481014537E+11	25.00	118,143	1,021,744	
61	4.696.839	0.800193864E+12	59.00	2,906,828	6,486,849	
62	290,540	0.964455172E+10	6.00	50,228	530,851	
Subtotal	4,987,378	0.809838416E+12	60.34	3,187,558	6,787,199	
Total	7,653,433	0.104643673E+13	96.68	5,620,139	9,686,726	

CONFIDENCE LIMITS

	Total b	iomass (t)	Total population		
	Lower	Upper	Lower	Upper	
80 Percent	6,332,099	8,974,767	9,794,716,077	13,577,684,647	
95 Percent	5,620,139	9,686,726	8,772,848,914	14,599,551,810	

.

. .

Stratum	Total hauls	Hauls with catch	Hauls with no.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no./ha)	Variance mean CPUE (no./ha)
10		54	54	52	5.32	0 133752E+01	12 88	0 128/725+02
20	31	29	29	27	4.34	0.879200E+00	7.40	0.541607E+01
31 32	68 8	61 8	61 8	60 8	14.70 14.24	0.486997E+01 0.117976E+02	8.24 8.39	0.233344E+01 0.162994E+02
Subtotal	76	69	69	68	14.66	0.416293E+01	8.25	0.207147E+01
41 42	44 31	40 31	40 31	39 31	7.66 22.93	0.502785E+01 0.198436E+02	6.46 19.18	0.229620E+01 0.126773E+02
45 Subtotal	94	88 88	88	87	9.83	0.296214E+01	19.04	0.171167E+02 0.206122E+01
50	26	25	25	24	16.21	0.149846E+02	4.03	0.111187E+01
61	60	57	57	54	33.50	0.220430E+02	7.91	0.103617E+01
62 Subtotal	67	64	7 64	7 61	24.76 32.90	0.156262E+02 0.192200E+02	10.31 8.08	0.139891E+01 0.906537E+00
Total	352	329	329	319	15.29	0.131739E+01	9.38	0.665379E+00

Table E-2--CPUE, population, and biomass estimates for Pacific cod.

POPULATION

Stratum	Population	Variance population	Eff. deg. freedom	<u>95% Confic</u> Lower	lence limits Upper
10	100,308,812	0.779046789E+15	57.00	44,398,072	156,219,553
20	30,343,358	0.911643169E+14	30.00	10,846,340	49,840,375
31 32 Subtotal	77,855,954 7,357,990 85,213,945	0.208497356E+15 0.125482828E+14 0.221045638E+15	67.00 7.00 72.78	49,010,771 0 55,543,164	106,701,137 15,735,661 114,884,726
41 42 43 Subtotal	40,516,653 46,064,934 40,185,496 126,767,083	0.902803562E+14 0.730886520E+14 0.762609351E+14 0.239629943E+15	43.00 30.00 18.00 83.14	21,343,854 28,607,488 21,837,987 95,925,792	59,689,452 63,522,380 58,533,005 157,608,374
50	15,648,630	0.167320697E+14	25.00	7,222,230	24,075,029
61 62 Subtotal	69,745,951 6,628,117 76,374,068	0.804846785E+14 0.578130646E+12 0.810628091E+14	59.00 6.00 59.82	51,793,880 4,767,543 58,367,091	87,698,022 8,488,691 94,381,045
Total	434,655,895	0.142868157E+16	164.50	359,817,087	509,494,704

:

,

.

.

.

.

.

•

Table E-2--Continued.

#### BIOMASS

		Variance	Eff. deg.	. 95% Confic	ence limits
Stratum	Biomass (t)	biomass	freedom	Lower	Upper
10	41,425	0.811058859E+08	57.00	23,385	59,465
20	17,802	0.147988719E+08	30.00	9,947	25,658
31	138,987	0.435140753E+09	67.00	97.316	180,658
32	12,493	0.908254505E+07	7,00	5.365	19 620
Subtotal	151,480	0.444223298E+09	69.54	109,397	193,562
41	48,036	0.197681242E+09	43.00	19.665	76.407
42	55,063	0.114404996E+09	30.00	33,222	76,904
43	20,747	0.322815194E+08	18.00	8,810	32,685
Subtotal	123,846	0.344367758E+09	84.53	86,887	160,806
50	62,871	0.225496076E+09	25.00	31,937	93,805
61	295,213	0.171220297E+10	59.00	212,412	378.014
62	15,914	0.645784673E+07	6.00	9.696	22 133
Subtotal	311,127	0.171866081E+10	59.44	228,170	394,084
Total	708,551	0.282865270E+10	142.64	603,245	813,857

CONFIDENCE LIMITS

	<u> </u>	omass (t)	Total population		
	Lower	Upper	Lower	Upper	
30 Percent 20 Percent	<b>639,996</b> 620,371	777,106 796,731	385,934,761 371,987,647	483,377,029 497,324,143	
95 Percent	603,245	813,857	359,817,087	509,494,704	

Stratum	Total hauls	Hauls with catch	Hauls with no.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no./ha)	Variance mean CPUE (no./ha)
10	58	58	58	58	111.25	0.138846E+03	511.64	0.375403E+04
20	31	31	31	31	89.71	0.247145E+03	486.82	0.951600E+04
31	68	65	65	65	70.30	0.673105E+02	227.90	0.832533E+03
32	8	6	6	6	10.30	0.912915E+01	26.92	0.719022E+02
Subtotal	76	71	71	71	65.20	0.564275E+02	210.83	0.697630E+03
41	44	39	39	39	32.85	0.902053E+02	106.75	0.994016E+03
42	31	29	29	29	25.43	0.545215E+02	81.12	0.643224E+03
43	19	15	15	15	3.88	0.336130E+01	16.75	0.638080E+02
Subtotal	94	83	83	83	25.53	0.333395E+02	83.42	0.370514E+03
50	26	1	1	1	0.16	0.256023E-01	0.25	0.612804E-0
61	60	1	1	1	0.00	0.275343E-05	0.01	0.995411E-04
62	7	2	2	1	0.02	0.183909E-03	0.09	0.357548E-02
Subtotal	67	3	3	2	0.00	0.324175E-05	0.02	0.102992E-03
Total	352	247	247	246	47.13	0.104683E+02	195.52	0.235350E+03

.

Table. E-3.--CPUE, population, and biomass estimates for yellowfin sole.

_____

POPULATION

Stratum	Population	Variance population	Eff. deg. freedom	<u>95% Confidence limits</u> Lower Upper		
	7 08/ 18/ /07	0. 0076/ 10575+19	57 00	3 028 ///6 262	/ 930 022 725	
10	3,704,104,473	0.22/04/23/24/0	57.00	5,020,440,202	4,737,722,123	
20	1,997,283,772	0.160175266E+18	30.00	1,180,036,527	2,814,531,016	
31	2.154.290.058	0.743883245E+17	67.00	1.609,441,995	2,699,138,121	
32	23.616.970	0.553546618E+14	7.00	6,021,201	41,212,739	
Subtotal	2,177,907,028	0.744436791E+17	67.10	1,632,856,284	2,722,957,773	
41	669,377,986	0.390819654E+17	43.00	270,466,008	1,068,289,964	
42	194,779,896	0.370839520E+16	30.00	70,429,051	319,130,742	
43	35,348,744	0.284287103E+15	18.00	. 0	70,773,317	
Subtotal	899,506,626	0.430746477E+17	51.56	482,674,600	1,316,338,653	
50	960,302	0.922179533E+12	25.00	0	2,938,523	
61	87,931	0.773190678E+10	59.00	0	263,886	
62	59,491	0.147764030E+10	6.00	0	153,554	
Subtotal	147,422	0.920954708E+10	61.59	0	339,291	
Total	9,059,989,643	0.505335781E+18	135.62	7,652,474,534	10,467,504,753	

.

ļ

.

.

.

BIOHASS						
<b>0</b>		Variance	Eff. deg.			
Stratum	Biomass (t)	biomass	freedom	Lower	Upper	
10	866,296	0.841948704E+10	57.00	682,492	1,050,101	
20	368,047	0.415999797E+10	30.00	236,342	499,752	
31	<b>664</b> ,526	0.601431320E+10	67.00	509,603	819.449	
32	9,038	0.702817673E+07	7.00	2.768	15.308	
Subtotal	673,564	0.602134138E+10	67.16	518,551	828,578	
41	205,966	0.354662176E+10	43.00	85,796	326,136	
42	61,068	0.314334274E+09	30.00	24,865	97.272	
43	8,186	0.149757610E+08	18.00	55	16,317	
Subtotal	275,220	0.387593179E+10	50.78	150,118	400,323	
50	621	0.385277620E+06	25.00	0	1,899	
61	15	0.213874026E+03	59.00	٥	44	
62	13	0.760041506E+02	6.00	Ō	35	
Subtotal	28	0.289878176E+03	48.35	Ő	62	
Total	2,183,777	0.224771437E+11	190.20	1,886,934	2,480,620	

## Table E-3 -- Continued.

### CONFIDENCE LIMITS

	Total_b	iomass (t)	Total	population
<del></del>	Lower	Upper	Lower	Upper
80 Percent 90 Percent 95 Percent	1,990,528 1,935,208 1,886,934	2,377,027 2,432,347 2,480,620	8,143,680,993 7,881,372,150 7,652,474,534	9,976,298,294 10,238,607,137 10,467,504,753

CPUE										
Stratum	Total hauls	Hauls with catch	Hauls with no.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no./ha)	Variance mean CPUE (no./ha)		
10	58	58	58	58	79.53	0.579277E+02	752.41	0.872273E+04		
20	31	31	31	31	46.50	0.270243E+02	383.89	0.441627E+04		
31 32 Subtotal	68 8 76	63 8 71	63 8 71	62 8 70	24.97 21.68 24.69	0.961021E+01 0.247854E+02 0.822581E+01	192.09 88.02 183.25	0.712193E+03 0.637345E+03 0.600944E+03		
41 42 43 Subtotal	44 31 19 94	40 31 19 90	40 31 19 90	39 31 19 89	15.41 73.51 6.91 26.69	0.177476E+02 0.432284E+03 0.329355E+01 0.275660E+02	74.99 252.18 24.11 104.49	0.519814E+03 0.203252E+04 0.126990E+02 0.277080E+03		
50	26	7	7	5	0.59	0.116373E+00	1.36	0.578537E+00		
61 62 Subtotal	60 7 67	50 7 57	50 7 57	40 6 46	5.77 4.62 5.70	0.119255E+01 0.138539E+01 0.104232E+01	12.23 12.28 12.23	0.630293E+01 0.916941E+01 0.551746E+01		
Total	352	314	314	299	30.41	0.379338E+01	228.21	0.326065E+03		

Table E-4.--CPUE, population, and biomass estimates for rock sole.

POPULATION

Stratum	Population	Variance population	Eff. deg. freedom	_95% Confidence limits Lower Upper		
10	5,859,090,863	0.528939693E+18	57.00	4,402,235,119	7,315,946,607	
20	1,574,987,566	0.743356374E+17	30.00	1,018,245,198	2,131,729,935	
31 32	1,815,762,091 77,226,217	0.636357285E+17 0.490667025E+15	67.00 7.00	1,311,828,239 24,839,090	2,319,695,943 129,613,344	
Subtotal	1,892,988,508	0.041203955E+17	68.00	1,387,199,792	2,398,776,824	
41 42	470,204,613 605,512,345	0.204376657E+17 0.117181249E+17 0.5(53020(05.1)	43.00 30.00	181,732,042 384,465,257	758,677,183 826,559,434	
45 Subtotal	1,126,613,922	0.322123688E+17	72.61	35,093,547 768,435,569	66,700,380 1,484,792,275	
50	5,272,267	0.870612511E+13	25.00	0	11,350,533	
61	107,773,097	0.489583251E+15	59.00	63,496,808	152,049,386	
62 Subtotal	7,896,568 115,669,665	0.378944886E+13 0.493372700E+15	6.00 59.88	3,133,113 71,245,676	12,660,022 160,093,654	
Total	10,574,622,592	0.700116173E+18	94.86	8,910,925,534	12,238,319,649	

128

Table E-4Contin
-----------------

### BIOMASS

-

		Variance	Eff. deg.	95% Confi	dence limits
Stratum	Biomass (t)	biomass	freedom	Lower	Upper
10	619,275	0.351269063E+10	57.00	500,553	737,998
20	190,773	0.454877817E+09	30.00	147,222	234,325
31	236,055	0.858689246E+09	67.00	177,517	294,594
32	19,019	0.190813304E+08	7.00	8,688	29.350
Subtotal	255,074	0.877770577E+09	69.68	195,919	314,230
41	96,641	0.697787753E+09	43.00	43,338	149,943
42	176,504	0.249225987E+10	30.00	74,562	278,446
43	14,586	0.146739039E+08	18.00	6,537	22,634
Subtotal	287,730	0.320472153E+10	47.03	173,737	401,723
50	2,271	0.175124368E+07	25.00	0	4,997
61	50,896	0.926321114E+08	59.00	31,637	70,155
62	2,968	0.572541844E+06	6.00	1,116	4,819
Subtotal	53,863	0.932046532E+08	59.71	34,555	73,172
Total	1,408,988	0.814501645E+10	146.46	1,230,295	1,587,681

'

.

.

CONFIDENCE LIMITS

	Total biomass (t)		Total population		
	Lower	Upper	Lower	Upper	
30 Percent	1,292,656	1,525,319	9,493,637,869 9 182 792 878	11,655,607,314	
5 Percent	1,230,295	1,587,681	8,910,925,534	12,238,319,649	

Stratum	Total hauls	Hauls with catch	Hauls with no.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no./ha)	Variance mean CPUE (nº./ha)		
10	58	42	42	40	2.97	0.246815E+00	9.21	0.602582E+01		
20	31	10	10	5	0.24	0.762953E-02	0.54	0.390908E-01		
31 32 Subtotal	68 8 76	68 8 76	68 8 76	66 8 74	19.36 4.64 18.11	0.614399E+01 0.110633E+01 0.515257E+01	63.92 14.11 59.69	0.951202E+02 0.205665E+02 0.797960E+02		
41 42 43 Subtotal	44 31 19 94	42 27 18 87	42 27 18 87	40 25 18 83	4.30 11.20 4.48 5.88	0.113359E+01 0.150360E+02 0.115582E+01 0.117333E+01	16.39 26.84 24.79 20.36	0.114315E+02 0.589567E+02 0.333112E+02 0.806642E+01		
50	26	26	26	26	23.83	0.583520E+01	145.83	0.384940E+03		
61 62 Subtotal	60 7 67	59 6 65	59 6 65	56 6 62	31.28 5.12 29.50	0.304964E+02 0.930028E+01 0.265338E+02	106.61 16.42 100.48	0.206125E+03 0.208966E+02 0.179148E+03		
Total	352	306	306	290	13.94	0.147255E+01	52.35	0.147315E+02		

Table E-5.--CPUE, population and biomass estimates for Hippoglossoides **spp**.

POPULATION

Stratum	Population	Variance population	Eff. deg. freedom	<u>95% Confi</u> Lower	<u>dence limits</u> Upper
		· · ·			
10	71,708,388	0.365400882E+15	57.00	33,417,251	109,999,525
20	2,227,843	0.657983970E+12	30.00	571,450	3,884,236
31	604,193,043	0.849915246E+16	67.00	420,026,459	788,359,627
32	12,380,152	0.158333054E+14	7.00	2,969,560	21,790,744
Subtotal	616,573,195	0.851498577E+16	67.25	432,235,146	800,911,244
41	102,793,852	0.449454927E+15	43.00	60,014,722	145,572,983
42	64,436,054	0.339904421E+15	30.00	26,788,727	102,083,380
43	52.323.705	0,148412964E+15	18.00	26,728,302	77,919,108
Subtotal	219,553,611	0.937772311E+15	89.99	158,613,705	280,493,517
50	565,727,480	0.579278846E+16	25.00	408,940,117	722,514,843
61	939,563,873	0.160108721E+17	59.00	686,362,863	1,192,764,884
62	10.555.354	0.863597144E+13	6.00	3,364,350	17,746,359
Subtotal	950,119,228	0.160195081E+17	59.06	696,849,940	1,203,388,515
Total	2,425,909,745	0.316311135E+17	147.63	2,073,767,063	2,778,052,427

# Table E-5.--Continued.

#### BIOMASS

		Variance	Eff. deg.	<u>95% Confic</u>	<u>95% Confidence limits</u>		
Stratum	Biomass (t)	biomass	freedom	Lower	Upper		
10	23,154	0.149666532E+08	57.00	15,405	30,904		
20	<del>99</del> 1	0.128421885E+06	30.00	259	1,723		
31	183,040	0.548975936E+09	67.00	136,235	229,846		
32	4,068	0.851722111E+06	7.00	1,885	6,250		
Subtotal	187,108	0.549827658E+09	67.21	140,266	233,950		
41	26,989	0.445696704E+08	43.00	13,518	40,460		
42	26,902	0.866873563E+08	30.00	7.889	45,914		
43	9,464	0.514957237E+07	18.00	4.696	14 232		
Subtotal	63,354	0.136406599E+09	62.41	40,004	86,705		
50	92,438	0.878112233E+08	25.00	73,134	111,742		
61	275,650	0.236882078E+10	59.00	178,258	373.042		
62	3,294	0.384353441E+07	6.00	0	8.091		
Subtotal	278,944	0.237266432E+10	59.19	181,473	376,415		
Total	645,990	0.316180487E+10	99.75	534,280	757,700		

### CONFIDENCE LIMITS

	Total biomass (t)		Total population		
	Lower	Upper	Lower	Upper	
80 Percent 90 Percent	573,378 552,517	718,601 739 463	2,196,660,384	2,655,159,107	
95 Percent	534,280	757,700	2,073,767,063	2,778,052,427	

:

Stratum	Total hauls	Hauls with catch	Hauls with no.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no./ha)	Variance mean CPUE (no./ha)	
10	58	47	47	46	9.20	0.357791E+01	20.25	0.125338E+02	
20	31	30	30	30	13.63	0.542920E+01	28.37	0.169577E+02	
31 32 Subtotal	68 8 76	56 7 63	56 7 63	51 6 57	14.30 4.28 13.44	0.524479E+01 0.451909E+01 0.442427E+01	18.72 3.49 17.43	0.937865E+01 0.292044E+01 0.787417E+01	
41 42 43 Subtotal	44 31 19 94	41 22 16 79	41 22 16 79	39 19 13 71	27.31 13.74 13.15 21.52	0.381415E+02 0.143738E+02 0.154873E+02 0.142056E+02	33.24 16.32 12.94 25.50	0.639228E+02 0.192976E+02 0.137755E+02 0.231033E+02	
50	26	0	O	0	0.00	0.	0.00	0.	
61 62 Subtotal	60 7 67	15 3 18	15 3 18	8 2 10	3.05 0.66 2.89	0.135669E+01 0.187445E+00 0.117937E+01	1.68 0.33 1.59	0.405439E+00 0.343715E-01 0.352346E+00	
Total	352	237	237	214	11.35	0.118174E+01	16.06	0.214381E+01	

Table E-6.--CPUE, population, and biomass estimates for Alaska plaice.

POPULATION

Stratum	Varianc tum Population populati		ce Eff.deg. <u>9</u> ion freedom Lo		<u>5% Confidence limits</u> wer Upper	
10	157,693,212	0.760040671E+15	57.00	102,468,700	212,917,724	
20	116,389,397	0.285434975E+15	30.00	81,890,172	150,888,621	
31 32 Subtotal	176,988,630 3,062,315	0.837998896E+15 0.224833068E+13 0.860267227E+15	67.00 7.00 67.36	119,159,755 0 122,144,545	234,817,505 6,608,499	
41	208,455,203	0.251326943E+16	43.00	107,295,301	309,615,106	
42 43 Subtotal	39,196,597 27,322,055 274,973,855	0.111257025E+15 0.613746153E+14 0.268590107E+16	30.00 18.00 48.90	17,657,898 10,862,411 170,723,910	60,735,295 43,781,699 379,223,801	
50	0	0.	0.00	0	0	
61 62	14,825,520 215,194	0.314926876E+14 0.142047217E+11	59.00 6.00	3,595,959 0	26,055,082 506,837	
Subtotal	15,040,715	0.315068923E+14	59.05	3,808,621	26,272,809	
Total	744,148,125	0.460313083E+16	124.01	609,812,465	878,483,784	

132

Table E-6.--Continued.

R	î	OMA	SS
-			

		Variance	Eff. deg.	_95% Confid	ence limits
Stratum	Biomass (t)	biomass	freedom	Lower	Upper
10	71,609	0.216961758E+09	57.00	42,103	101,115
20	55,939	0.913854198E+08	30.00	36,419	75,460
31	135,131	0.468631582E+09	67.00	91,886	178,376
32	3,753	0.347907306E+07	7.00	. 0	8,165
Subtotal	138,885	0.472110655E+09	67.96	95,486	182,283
41	171,251	0.149961724E+10	43.00	93,110	249.392
42	32,990	0.828693153E+08	30.00	14,401	51,579
43	27,748	0.690012775E+08	18.00	10,296	45.201
Subtotal	231,990	0.165148783E+10	51.66	150,371	313,608
50	0	0.	0.00	0	C
61	26,923	0.105381771E+09	59.00	6,381	47.465
62	421	0.774654710E+05	6.00	0	1,102
Subtotal	27,344	0.105459237E+09	59.09	6,795	47,894
Total	525,767	0.253740490E+10	112.24	425,894	625,639

CONFIDENCE LIMITS

.

	Total biomass (t)		Total population		
	Lower	Upper	Lower	Upper	
0 Percent	460,789	590,744	656,694,203	831,602,046	
0 Percent 5 Percent	442,161 425,894	609,372 625,639	631,658,940 609,812,465	856,637,309 878,483,784	

.

÷

1

Stratum	Total hauls	Hauls with catch	Hauls with no.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no./ha)	Variance mean CPUE (no./ha)	
10	58	0	0	0	0.00	0.	0.00	0.	
20	31	0	0	0	0.00	0.	0.00	0.	
31	68	0	0	0	0.00	0.	0.00	0.	
32	8	0	0	0	0.00	0.	0.00	0.	
Subtotal	76	0	0	0	0.00	0.	0.00	0.	
41	44	20	20	16	0.04	0.428549E-03	0.44	0.835945E-02	
42	31	1	1	1	0.01	0.345047E-04	0.06	0.419266E-02	
43	19	7	7	6	0.12	0.112305E-01	0.40	0.377334E-01	
Subtotal	94	28	28	23	0.05	0.577034E-03	0.35	0.448112E-02	
50	26	0	0	0	0.00	0.	0.00	0.	
61	60	28	28	22	1.45	0.235557E+00	1.43	0.119629E+00	
62	7	6	6	3	1.26	0.697248F+00	2.01	0 356464E+00	
Subtotal	67	34	34	25	1.44	0.207840E+00	1.47	0.105564E+00	
Total	352	62	62	48	0.30	0.868689E-02	0.38	0.463892E-02	

Table E-7.--CPUE, population, and biomass estimates for Greenland turbot.

POPULATION

Stratum	Population	Variance population	Eff. deg. freedom	<u>_95% Confid</u> Lower	ence limits_ Upper
10	0	0.	0.00	0	0
20	0	0.	0.00	0	0
31 32	0	0. 0	0.00	0	0
Subtotal	Õ	0.	0.00	ŏ	0
41 42 43 Subtotal	2,756,152 155,474 839,981 3,751,606	0.328670719E+12 0.241720648E+11 0.168115459E+12 0.520958243E+12	43.00 30.00 18.00 66.17	1,599,322 0 2,309,501	3,912,981 472,951 1,701,430 5,193,711
50	0	0.	0.00	0	0
61 62 Subtotal	12,593,049 1,290,789 13,883,838	0.929226918E+13 0.147316046E+12 0.943958522E+13	59.00 6.00 60.74	6,493,204 351,587 7,740,080	18,692,895 2,229,991 20,027,595
Total	17,635,444	0.996054347E+13	67.44	11,330,742	23,940,145

 $1 \ 3 \ 4$ 

Table E-7.--Continued.

#### BIOMASS

		Variance	Eff. deg.	95% Confide	ence limits
Stratum	Biomass (t)	biomass	freedom	Lower	Upper
10	0	0.	0.00	0	0
20	0	0.	0.00	0	0
31	0	0.	0.00	0	0
32	Ó	0.	0.00	0	0
Subtotal	Ő	0.	0.00	0	0
41	234	0.168493553E+05	43.00	0	496
42	14	0.198930931E+03	30.00	0	43
43	250	0.500356309E+05	18.00	0	720
Subtotal	498	0.670839171E+05	30.89	0	1,026
50	0	0.	0.00 ·	0	0
61	12,785	0.182969821E+08	59.00	4,226	21,345
62	810	0.288152222E+06	6.00	0	2,124
ubtotal	13,596	0.185851343E+08	60.72	4,975	22,216
Total	14,093	0.186522182E+08	61.16	5,457	22,730

CONFIDENCE LIMITS

.

	Total biomass (t)		Total population		
	Lower	Upper	Lower	Оррег	
80 Percent 90 Percent 95 Percent	8,497 6,878 5,457	19,690 21,309 22,730	13,547,803 12,366,499 11,330,742	21,723,085 22,904,388 23,940,145	

.

.

:

CPUE									
Stratum	Total hauls	Hauls with catch	Hauls with no.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no./ha)	Variance mean CPUE (no./ha)	
10	58	5	5	3	0.12	0.835756E-02	1.14	0.861564E+00	
20	31	0	0	0	0.00	<b>0.</b>	0.00	0.	
31 32 Subtotal	68 8 76	40 8 48	40 8 48	36 8 44	7.02 13.55 7.58	0.374538E+01 0.314358E+02 0.336294E+01	20.69 52.36 23.38	0.310358E+02 0.262383E+03 0.278804E+02	
41 42 43 Subtotal	44 31 19 94	3 22 0 25	3 22 0 25	3 18 0 21	0.45 5.04 0.00 1.38	0.123985E+00 0.169740E+01 0. 0.126107E+00	1.24 20.94 0.00 5.38	0.943169E+00 0.449931E+02 0. 0.255025E+01	
50	26	26	26	24	39.22	0.208965E+02	81.60	0.824240E+02	
61 62 Subtotal	60 7 67	55 3 58	55 3 58	47 2 49	23.24 4.84 21.98	0.114120E+02 0.163740E+02 0.998875E+01	34.41 5.30 32.43	0.253778E+02 0.172258E+02 0.221242E+02	
Total	352	162	162	141	9.80	0.736637E+00	20.11	0.304706E+01	

Table E-8.--CPUE, population, and biomass estimates for Atheresthes spp.

POPULATION

Stratum	Population	Variance population	ariance Eff.deg. pulation freedom		dence <u>limits</u> Upper
10	8,910,330	0.522445580E+14	57.00	0	23,389,178
20	0	0.	0.00	0	0
31 32 Subtotal	195,530,283 45,937,853 241,468,136	0.277310144E+16 0.201998462E+15 0.297509990E+16	67.00 7.00 73.39	90,332,666 12,325,016 132,615,543	300,727,900 79,550,691 350,320,730
41 42 43 Subtotal	7,751,533 50,268,037 0 58,019,570	0.370827898E+14 0.259399597E+15 0. 0.296482387E+15	43.00 30.00 0.00 38.64	0 17,379,816 0 23,184,491	20,039,360 83,156,258 0 92,854,649
50	316,539,755	0.124035968E+16	25.00	243,989,150	389,090,361
61 62 Subtotal	303,291,495 3,404,424 306,695,919	0.197123743E+16 0.711890963E+13 0.197835634E+16	59.00 6.00 59.42	214,447,637 0 217,691,781	392,135,353 9,933,335 395,700,057
Total	<b>931,633,7</b> 11	0.654254287E+16	170.99	771,481,984	1,091,785,437

Table	E-8Continued

BIOMAS	S
--------	---

		Variance	Eff. deg.	_95% Confi	dence limits
Stratum	Biomass (t)	biomass	freedom	Lower	Upper
10	931	0.506795966E+06	57.00	0	2,357
20	0	0.	0.00	0	0
31	66,400	0.334656334E+09	67.00	29,855	102,944
32	11,885	0.242011887E+08	7.00	250	23,519
Subtotal	78,284	0.358857523E+09	73.37	40,479	116,089
41	2,803	0.487474390E+07	43.00	0	7,258
42	12.094	0.978605546E+07	30.00	5,706	18,482
43	· 0	0.	0.00	0	. O
Subtotal	14,897	0.146607994E+08	57.40	7,227	22,567
50	152,131	0.314462096E+09	25.00	115,601	188,661
61	204,784	0.886430658E+09	59.00	145,207	264,361
62	3,110	0.676688449E+07	6.00	. 0	9,475
Subtotal	207,894	0.893197542E+09	59.87	148,121	267,666
Total	454,136	0.158168476E+10	131.39	375,391	532,881

### CONFIDENCE LIMITS

	Total biomass (t)		Total population	
	Lower	Upper	Lower	Upper
80 Percent 90 Percent	402,872 388,197	505,400 520,075	827, 372, 558 797, 526, 387	1,035,894,863 1,065,741,034
95 Percent	375,391	532,881	771,481,984	1,091,785,437

.

1

Stratum	Total heuls	Hauls with catch	Hauls with no.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Nean CPUE (no./ha)	Variance mean CPUE (no./ha)
10	58	51	51	51	3.24	0.147830E+00	4.69	0.731293E+00
20	31	21	21	21	1.36	0.922767E-01	1.91	0.310640E+00
31	68	48	48	48	2.04	0.117389E+00	0.93	0.458803E-01
32	8	2	2	2	0.35	0.103039E+00	0.16	0.170020E-01
Subtotal	76	50	50	50	1.90	0.990373E-01	0.87	0.385400E-01
41	44	11	11	11	0.41	0.427079E-01	0.08	0.480427E-03
42	31	15	15	15	2.39	0.633375E+00	0.97	0.315121E+00
43	19	4	4	4	0.43	0.642814E-01	0.08	0.165802E-02
Subtotal	94	30	30	30	0.85	0.483170E-01	0.28	0.158533E-01
50	26	17	17	17	2.74	0.498761E+00	0.40	0.123443E-01
61	60	23	23	23	1.97	0.302118E+00	0.24	0.307323E-02
62	7	5	5	5	3.10	0.285602E+01	0.26	0.447332E-02
Subtotal	67	28	28	28	2.04	0.275636E+00	0.24	0.269026E-02
Total	352	197	197	197	1.93	0.274110E-01	1.30	0.260603E-0

Table E-9.--CPUE, populationand biomass estimates for Pacific halibut.

POPULATION

CPUE

Stratum	Population	Variance Population population		<u>95% Confidence limits</u> Lower Upper		
10	36,484,138	0.443450694E+14	57.00	23,144,743	49,823,533	
20	7,830,950	0.522875142E+13	30.00	3,161,618	12,500,281	
31 32	8,796,388 140,038	0.409948504E+13 0.130891638E+11	67.00 7.00	4,751,675 0	12,841,101 410,613	
Subtotal	8,936,426	0.411257421E+13	67.42	4,885,261	12,987,591	
41 42 43	474,237 2,340,187 163,321	0.188890564E+11 0.181677303E+13 0.738704219E+10	43.00 30.00 18.00	196,908 0 0	751,565 5,092,553 343,898	
Subtotal	2,977,745	0.184304913E+13	30.87	208,398	5,747,092	
50	1,540,402	0.185763207E+12	25.00	652,536	2,428,267	
61	2,141,628	0.238714897E+12	59.00	1,163,945	3,119,310	
62 Subtotal	164,122 2,305,750	0.184869336E+10 0.240563591E+12	6.00 59.88	58,910 1,324,804	269,334 3,286,696	
Total	60,075,410	0.559557710E+14	87.52	45,184,509	74,966,312	

### BIOMASS

Stratum		Variance	Eff. deg.	95% Confic	95% Confidence limits	
	Biomass (t)	biomass	freedom	Lower	Upper	
10	25,201	0.896431811E+07	57.00	19,203	31,198	
20	5,587	0.155321997E+07	30.00	3,042	8,132	
31	19,295	0.104888844E+08	67.00	12,826	25,765	
32 Subtotal	311 19,607	0.793258791E+05 0.105682103E+08	7.00 67.98	0 13,114	977 26,100	
41	2,547	0.167915801E+07	43,00	0	5,162	
42 43	5,748 908	0.365160873E+07 0.286395984E+06	30.00 18.00	1,845 0	9,650 2,032	
Subtotal	9,203	0.561716272E+07	61.31	4,463	13,942	
50	10,620	0.750562762E+07	25.00	4,977	16,264	
61	17,327	0.234671981E+08	59.00	7,633	27,021	
62 Subtotal	1,991 19,318	0.118031096E+07 0.246475091E+08	6.00 63.50	0 9,395	4,649 29,240	
Total	89,535	0.588560478E+08	223.96	74,346	104,725	

### CONFIDENCE LIMITS

	Total biomass (t)		Total population	
	Lower	Upper	Lower	Upper
80 Percent 90 Percent 95 Percent	79,647 76,816 74,346	99,424 102,255 104,725	50,405,301 47,621,111 45,184,509	69,745,520 72,529,710 74,966,312

÷

.

### APPENDIX F

# Population Estimates by Sex and Size Groups for Principal Fish Species

Appendix F presents estimates of the numbers of individuals within the overall survey area by sex and size group for principal fish species.

# List of Tables

## <u>Table</u>

# <u>Paqe</u>

F-l.	Walleye pollock	141				
F-2.	Pacific cod	143				
F-3.	Yellowfin sole	145				
F-4.	Rock sole	146				
F-5.	<u>Hippoglossoides</u> spp	147				
F-6.	Alaska plaice	148				
F-7.	Greenland turbot	149				
F-8.	Atheresthes spp.	150				
F-9.	Pacific halibut	151				
Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative
----------------	----------------------------	--------------	-------------	---------------	------------	------------
50	0	0	78 850	38 850	0.0000	. 0.000
70	ŏ	ő	747.211	747.211	0.0001	0.0001
80	ā	306,635	10.351.803	10,658,438	0.0009	0.0010
90	86,030	102,212	94,015,654	94,203,896	0.0081	0.0090
100	351,460	102,212	201,635,914	202,089,585	0.0173	0.0263
110	3,189,908	1,042,036	252,526,929	256,758,873	0.0220	0.0483
120	2,457,713	1,854,793	202,427,659	206,740,165	0.0177	0.0660
130	1,163,299	2,115,954	142,051,526	145,330,779	0.0124	0.0784
140	1,616,511	6,076,688	169,610,553	177,303,751	0.0152	0.0936
150	1,129,670	2,144,938	176,574,897	179,849,505	0.0154	0.1090
160	1,030,828	5,682,451	125,069,675	131,782,954	0.0113	0.1203
170	2,133,931	1,324,303	74,004,923	78,143,381	0.0007	0.1270
100	1,337,380	0,414,430	27,201,337	37,033,353	0.0052	0.1301
200	2 501 051	3,571,455	3 72/ 550	0 836 737	0.0012	0.1313
210	1 450 622	2 644 691	2 197 647	6 292 960	0.0005	0 1327
220	5.088.832	13.098.750	3,971,988	22,159,571	0.0019	0.1346
230	8,848,913	11,111,347	1.336.205	21,296,465	0.0018	0.1364
240	14,466,691	22,133,031	547,241	37,146,964	0.0032	0.1396
250	20,627,341	18,516,648	233,498	39,377,488	0.0034	0.1430
260	14,009,873	17,397,072	. 0	31,406,945	0.0027	0.1457
270	23,809,667	35,427,442	393,273	59,630,382	0.0051	0.1508
280	18,782,247	12,731,790	0	31,514,037	0.0027	0.1535
290	25,746,054	7,526,768	0	33,272,822	0.0028	0.1563
300	13,721,945	1,444,581	0	15,166,526	0.0013	0.1576
310	4,790,342	3,973,894	0	8,764,235	0.0007	0.1584
320	6,337,988	2,867,528	0	9,205,516	0.0008	0.1592
330	8,589,368	4,440,089	U	13,029,430	0.0011	0.1603
340	4,190,914	0.07/ 495	U	11,307,924	0.0010	0.1613
350	7,322,077	17 890 261	0	44 542 031	0.0017	0.1629
370	32 188 286	22 546 836	ő	54,735,122	0.0047	0.1714
380	70,245,168	48,130,492	õ	118.375.660	0.0101	0 1815
390	89,967,674	58, 145, 673	ŏ	148, 113, 347	0.0127	0.1942
400	173,254,303	83,563,383	0	256,817,686	0.0220	0.2162
410	295,791,348	158,346,441	0	454,137,789	0.0389	0.2550
420	434,092,543	245,253,604	0	679,346,148	0.0581	0.3132
430	499,334,173	310,692,147	0	810,026,320	0.0693	0.3825
440	556,919,758	369,534,109	0	926,453,867	0.0793	0.4618
450	483,907,504	388,879,797	0	872,787,301	0.0747	0.5365
460	454,963,458	363,978,633	D	818,942,091	0.0701	0.6065
470	429,421,885	330,738,721	U	/00,180,000	0.0548	0.6/21
480	305,223,431	298,010,485	0	610 205 / 15	0.0500	0.7288
490 500	303,770,320 348 317 040	200 365 056	0	558 683 025	0.0322	0.7011
510	107 878 304	212 596 295	ů	410 474 690	0.0351	0.8640
520	139 656 914	153,252,171	õ	292,909,086	0.0251	0.8891
530	113.634.696	139,927,303	ŏ	253,561,999	0.0217	0.9108
540	75,854,644	122,391,002	Ó	198,245,646	0.0170	0.9277
550	62,889,506	92,834,879	0	155,724,385	0.0133	0.9410
560	49,453,924	96,300,261	0	145,754,185	0.0125	0.9535
570	29,062,706	57,853,969	0	86,916,675	0.0074	0.9610
580	29,602,287	52,608,106	0	82,210,392	0.0070	0.9680
590	20,937,607	42,390,742	Q	63,328,349	0.0054	0.9734
600	21,812,802	36,434,454	0	58,247,256	0.0050	0.9784
610	17,260,442	33,357,755	Ű	50,618,177	0.0043	U.9827
620	11,205,873	38,4/2,155	Ű	49,678,028	0.0043	0.9870
630	7,917,125	18,465,542	U O	20,380,466	0.0025	0.9892
640	7,825,751	20,001,001	V	20,357,052	0.0024	0.9917
650	5,529,960	13,200,000	U O	20,730,840	0.0018	0.9934
000	4,211,/94	11,467,673	U	12,741,070	0.0014	U.7740

Table F-l.--Population estimates by sex and size group for walleye pollock.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
		·				
670	8,558,140	11,161,214	0	19,719,353	0.0017	0.9965
680	944,438	9.435.465	õ	10.379.903	0.0009	0.9974
690	1.371.405	5.984.515	Ō	7.355.920	0.0006	0.9980
700	524,745	6.015.767	Õ	6,540,512	0.0006	0.9986
710	377, 172	3,169,420	Ō	3,546,593	0.0003	0.9989
720	337.031	3,507,318	Ō	3,844,350	0.0003	0.9992
730	305,114	1.543.550	Ō	1.848.664	0.0002	0.9994
740	150,908	1,788,227	0	1,939,135	0.0002	0.9995
750	199,427	1,420,562	0	1,619,989	0.0001	0.9997
760	272,270	815,174	Ó	1,087,444	0.0001	0.9997
770	82.977	721,238	0	804,214	0.0001	0.9998
780	99,605	659,039	0	758,643	0.0001	0.9999
790	32,612	311,783	0	344,395	0.0000	0.9999
800	92.357	424.893	Ō	517,250	0.0000	1.0000
810	0	269, 196	0	269, 196	0.0000	1.0000
820	Ō	199,960	0	199,960	0.0000	1.0000
840	0	30,810	0	<u> </u>	0.0000	1.0000
Total	5,492,253,800	4,692,573,321	1,501,373,241	11,686,200,362		

Table F-1. --Continued.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
90	54, 154	85, 352	1 856 198	1.995 704	0.0046	0 0046
100	147,588	291,946	5,023,815	5,463,349	0.0126	0.0172
110	785,352	610,634	6,648,556	8,044,541	0.0185	0.0357
120	2,733,614	1,755,840	7,445,902	11,935,357	0.0275	0.0631
130	2,123,832	2,346,600	7,169,603	11,640,035	0.0268	0.0899
140	5,034,956	3,965,038	5,230,394	14,230,387	0.0327	0.1226
150	5,859,852	7,099,550	5,261,312	18,220,714	0.0419	0.1646
160	7,609,491	7,221,584	5,168,199	19,999,275	0.0460	0.2106
170	7,089,406	5, (26, 33)	2,988,654	15,804,397	0.0364	0.2469
180	5,906,946	4,402,370	1,154,157	11,525,460	0.0265	0.2735
200	4,200,338	3,838,333	730,777	9,001,070	0.0207	0.2942
210	2 547 454	1 775 442	75 377	4 418 475	0.0198	0.3100
220	1.386.991	1.261.443	13,311	2.648.434	0.0061	0.3262
230	1.915.677	1,278,405	õ	3, 194, 082	0.0073	0.3336
240	1,933,172	1,226,878	64.716	3,224,766	0.0074	0.3410
250	983,149	1,537,732	0	2,520,880	0.0058	0.3468
260	1,930,191	1,679,300	· 0	3,609,491	0.0083	0.3551
270	2,755,638	3,094,944	64,716	5,915,298	0.0136	0.3687
280	3,233,691	2,715,282	0	5,948,972	0.0137	0.3824
290	3,599,679	3,806,099	0	7,405,778	0.0170	0.3995
300	4,465,848	3,470,338	0	7,936,186	0.0183	0.4177
310	3,749,849	3,769,566	0	7,519,415	0.0173	0.4350
320	4,006,009	3,131,394	U	(,157,605	0.0105	0.4515
320	4,292,102	4,031,003 5 261 / 77	0	7,123,047 0 54/ 040	0.0210	0.4725
350	2 8/0 031	3 320 424	0	6 160 655	0.0220	0.4945
360	4 931.043	3,768,473	ő	8,699,516	0.0200	0.5287
370	3,638,769	3,776,904	ŏ	7.415.673	0.0171	0.5457
380	2,472,028	2.730.575	ō	5,202,604	0.0120	0.5577
390	1,620,338	2,768,752	0	4,389,091	0.0101	0.5678
400	2,228,254	2,941,638	0	5,169,892	0.0119	0.5797
410	2,156,819	1,823,646	0	3,980,465	0.0092	0.5889
420	1,977,969	1,618,400	0	3,596,369	0.0083	0.5971
430	1,923,394	1,029,301	0	2,952,696	0.0068	0.6039
440	1,154,142	1,764,606	0	2,918,747	0.0067	0.6106
450	1,075,234	1,326,528	U	2,401,762	0.0055	0.6162
460	1,542,740	1,160,951	U	2,703,890	0.0002	0.6224
470	2,723,778	1,109,000	0	2,072,200	0.0065	0.0309
400	1,000,720	1 468 098	ů	3 133 965	0.0072	0.6450
500	1 137 530	786 676	õ	1.924.206	0.0044	0.6494
510	1,300,436	2,701,328	ō	4,001,763	0.0092	0.6586
520	1,353,969	1,037,136	0	2,391,105	0.0055	0.6641
530	2,549,143	2,271,894	0	4,821,037	0.0111	0.6752
540	1,782,491	2,370,311	0	4,152,803	0.0096	0.6848
550	2,719,087	2,392,956	D	5,112,043	0.0118	0.6965
560	2,619,036	1,875,218	0	4,494,254	0.0103	0.7069
570	2,720,176	2,939,384	D	5,659,560	0.0130	0.7199
580	3,105,133	2,448,697	U	5,553,831	0.0128	0.7327
590	3,163,886	2,641,220	U	5,005,105	0.0154	0.7460
600	2,012,211	3,04/,00/ 3 507 /70	U 0	6 840 120	0.0150	0.7010
620	3,202,027 3,817,305	3,303,470 3 NRK 04K	0	6,904 251	0.0150	0.7927
630	2 067 194	3,908 379	ő	5,975,573	0.0137	0,8065
640	3,183,651	2,869,298	ŏ	6,052,949	0.0139	0.8204
650	2,099.683	2,013,705	Ď	4,113,389	0.0095	0.8298
660	3,853,344	2,271,176	0	6,124,520	0.0141	0.8439
670	2,228,405	1,997,880	0	4,226,285	0.0097	0.8537
680	2,067,624	2,631,769	0	4,699,392	0.0108	0.8645
690	1,317,527	1,280,878	0	2,598,405	0.0060	0.8705

.

Table F-2. -- Population estimates by sex and size group for Pacific cod.

Length			Use such	Tanal	<b>D</b>	Cumulative
(mn) 	Males	remates	Unsexed		Proportion	proportion
					i	• • • • •
700	2,389,115	2,522,393	0	4,911,508	0.0113	0.8818
/10	1,892,085	1,425,906	U	3,315,991	0.0076	0.8894
720	724,435	3,414,004	U	4,139,039	0.0095	0.0082
730	1,557,104	2,493,238	0	4,050,362	0.0095	0.9082
740	2,1/5,6//	1,961,462	U	4,157,140	0.0095	0.91//
750	885,488	2,8//,996	U	3,703,487	0.0087	0.9204
760	592,788	1,931,830	U	2,524,618	0.0058	0.9322
770	891,406	2,029,504	. U	2,920,910	0.0067	0.9389
780	1,327,758	1,591,321	U	2,919,079	0.0067	0.9456
790	943,758	957,414	0	1,901,172	0.0044	0.9500
800	550,522	2,282,278	0	2,832,800	0.0065	0.9565
810	825,990	2,185,211	0	3,011,201	0.0069	0.9635
820	326,842	448,090	0	774,933	0.0018	0.9652
830	237,783	1,581,682	0	1,819,465	0.0042	0.9694
840	485,917	950, 195	. 0	1,436,112	0.0033	0.9727
850	834,310	957,524	0	1,791,834	0.0041	0.9769
860	368,867	1,125,405	Q	1,494,272	0.0034	0.9803
870	349,989	412,577	0	762,566	0.0018	0.9820
880	119,442	691,869	Q	811,311	0.0019	0.9839
890	852,675	554,923	0	1,407,599	0.0032	0.9872
900	131,142	750,093	0	881,235	0.0020	0.9892
910	246,594	174,044	0	420,639	0.0010	0.9901
920	86,240	268,463	0	354,703	0.0008	0.9910
930	162,962	202,811	0	365,773	0.0008	0.9918
940	88,585	426,657	0	515,242	0.0012	0.9930
950	204, 123	633,983	0	838,106	0.0019	0.9949
960	227,701	535,897	0	763,597	0.0018	0.9967
970	91,612	102,905	0	194,517	0.0004	0.9971
980	17,501	94,300	0	111,800	0.0003	0.9974
990	0	95,308	0	95,308	0.0002	0.9976
1000	0	360,766	0	360,766	0.0008	0.9984
1020	Õ	455, 195	0	455, 195	0.0010	0.9995
1030	0	31,418	0	31,418	0.0001	0.9996
1050	0	77,592	0	77,592	0.0002	0.9997
1060	Ō	85,317	0	85,317	0.0002	0.9999
1070	<u>0</u>	32,492	0	32,492	0.0001	1.0000
Total	189,255,684	195,926,922	49,473,289	434,655,895		

Table F-2. --Continued.

Length	Malaa	Familia	<b>Henry and</b>	<b>X</b> - 4 - 1	<b>B</b>	Cumulative
(00)		remates	Unsexed	Ισται	Proportion	
80	n	303 861	n	303 861	0 0000	0 0000
90	2.467.209	2.473.322	Ő	4.940.532	0.0005	0.0006
100	7,575,998	5,315,848	275.425	13, 167, 272	0.0015	0.0020
110	9,406,130	14,098,368	826,275	24,330,774	0.0027	0.0047
120	28,817,449	24,906,170	137,713	53,861,331	0.0059	0.0107
130	43,045,555	28, 187, 582	0	71,233,137	0.0079	0.0185
140	46,909,351	49,842,089	0	96,751,440	0.0107	0.0292
150	71,578,518	78,234,353	0	149,812,871	0.0165	0.0457
160	89,405,941	107,913,735	0	197,319,676	0.0218	0.0675
170	152,429,544	135,620,171	0	288,049,715	0.0318	0.0993
180	165,160,888	204,901,264	0	370,062,153	0.0408	0.1402
190	208,596,262	208,707,264	0	417,303,526	0.0461	0.1862
200	201,302,108	212,426,523	0	413,728,631	0.0457	0.2319
210	264,205,831	226,183,402	0	490,389,232	0.0541	0.2860
220	232,875,357	249,916,781	0	482,792,138	0.0533	0.3393
230	223,496,463	243,163,278	0	466,659,742	0.0515	0.3908
240	256,137,078	264,798,766	0	520,935,844	0.0575	0.4483
250	234,197,123	258,260,374	0	492,457,497	0.0544	0.5027
260	246,896,338	260,790,896	0	507,687,234	0.0560	0.5587
270	225,566,631	247,256,335	0	472,822,966	0.0522	0.6109
.280	222,856,500	241,953,843	0	464,810,343	0.0513	0.6622
290	236,363,263	218,669,312	0	455,032,576	0.0502	0.7124
300	223,506,094	224,772,367	0	448,278,461	0.0495	0.7619
310	244,870,675	243,519,687	0	488,390,361	0.0539	0.8158
320	167,596,017	281,658,902	0	449,254,919	0.0496	0.8654
330	91,510,264	298,888,973	0	390,399,236	0.0431	0.9085
340	38,881,908	273, 153, 188	0	312,035,095	0.0344	0.9429
350	15,265,583	204,604,423	0	219,870,007	0.0243	0.9672
360	7,903,488	123,542,098	U	131,445,586	0.0145	0.9817
370	2,944,901	78,107,488	0	81,052,389	0.0089	0.9906
380	951,874	46,656,677	d	47,608,551	0.0053	0.9959
390	286,252	19,147,238	U	19,433,489	0.0021	0.9980
400	0	8,797,907	U	8,797,907	0.0010	0.9990
410	0	5,289,536	U	5,289,536	0.0006	0.9996
420	0	2,004,269	U	2,004,269	0.0002	0.9998
430	0	1,591,028	0	1,591,028	0.0002	1.0000
450	0	86,317	0	86,317	0.0000	1.0000
lotal	3,963,006,597	5,095,743,634	1,239,413	9,059,989,643		

Table F-3. -- Population estimates by sex and size group for yellowfin **sole.** 

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
50	0	O	270,912	270,912	0.0000	0.0000
60	0	0	131,100	131,100	0.0000	0.0000
70	1,195,758	0	2,759,398	3,955,156	0.0004	0.0004
80	7,091,480	1,146,245	25,946,520	34, 184, 246	0.0032	0.0036
90	23,086,114	14,608,026	136,985,689	174,679,829	0.0165	0.0202
100	96,493,562	44,075,345	406,813,010	547,381,917	0.0518	0.0719
110	203,470,447	95,877,640	389,789,401	689,137,489	0.0652	0.1371
120	287,214,085	185,826,832	280,026,931	753,067,848	0.0712	0.2083
130	306,810,882	175,233,577	176,346,059	658,390,518	0.0623	0.2706
140	293,426,621	202,167,459	119,860,729	615,454,809	0.0582	0.3288
150	322,572,768	256,599,710	78,113,602	657,286,080	0.0622	0.3909
160	310,894,494	282,125,400	37,408,226	630,428,120	0.0596	0.4505
170	309,816,258	225,536,152	16,399,637	551,752,047	0.0522	0.5027
180	274,601,417	219,475,059	10,369,140	504,445,617	0.0477	0.5504
190	234,149,457	218,414,806	645,409	453,209,673	0.0429	0.5933
200	172,901,219	1/4,285,526	U	347,180,545	0.0328	0.0201
210	176,519,840	165,726,639	U	340,246,479	0.0322	0.6585
220	144,888,866	145,587,293	U	290,476,159	0.0275	0.0858
230	148, 338, 664	143,011,110	0	271,747,774	0.02/0	0.7154
240	130,061,658	144,740,442	U	274,808,100	0.0200	0.7594
250	125,827,364	130,487,693	U	256,515,057	0.0242	U. (030
260	140,037,657	124,235,824	U	204,273,401	0.0250	0.7000
270 -	137,835,531	118,035,238	0	201 224 51/	0.0242	0.0120
280	163,054,277	128,172,230	U	291,220,314	0.0275	0.0403
290	164,636,102	112,502,832	Ŭ	211,190,933	0.0202	0.0000
300	160,033,949	93,050,347	U	237,004,290	0.0240	0.0911
310	127,099,430	105,519,277	U	233,210,700	0.0221	0.9152
320	80,403,717 70,227,277	91,920,314	U	170,414,031	0.0109	0.7300
330	38,224,200	00,/42,000	Ű	124,907,132	0.0110	0.7410
340	18,083,990	97,330,231	0	115 494 750	0.0109	0.7520
350	D, 090, 070	100,900,003	U	06 888 771	0.0109	0.9037
300	7 599 334	74,730,731	U	90,000,731	0.0092	0.9729
370	5,500,220	40 205 454	0	40 012 B13	0.0058	0.9013
300	207,137 326,607	60,303,838 /3 32/ 331	0	43 648 828	0.00/1	0.901/
390	J24,497 110 709	43,324,331	0	43,040,020	0.0041	0.9945
400	750 177	26 0/3 980	, i i i i i i i i i i i i i i i i i i i	26 803 153	0.0032	0 0071
410	(07,175 (07,75	11 336 832	ŏ	11 730 258	0.0025	0 9982
420	402,425	6 57/ D/3	0	6 576 963	0.0006	0.00088
430	0	0 004 158	· 0	0,074,745	0.0000	0.0007
440	0	1 717 11/	0	1 313 11/	0.0001	0 0008
430	0	1 640 532	u n	1 640 532	0.0002	0.9999
400	ů n	RL LA3	n o	RL LKZ	0.0000	1,0000
470	0	126 605	0	126 695	0.0000	1.0000
400	0	301 057	0	301 057	0.0000	1.0000
Total	4,626,503,826	4,266,253,001	1,681,865,764	10,574,622,592	010000	

Table F-4. -- Population estimates by sex and size group for rock sole.

Length (mm)	Males	females	Unsexed	Total	Proportion	Cumulative proportion
	· · · · · · · · · · · · · · · · · · ·			-		
80	0	203,734	0	203,734	0.0001	0.0001
90	1,374,866	0	0	1,374,866	0.0006	0.0007
100	1,807,996	1,049,185	0	2,857,181	0.0012	0.0018
110	3,215,245	962,973	0	4,178,218	0.0017	0.0036
120	5,460,038	4,545,865	301,262	10,307,165	0.0042	0.0078
130	12,561,280	9,051,992	328,705	21,941,977	0.0090	0.0168
140	34,567,940	25,333,436	493,058	60,394,434	0.0249	0.0417
150	41,718,239	35,595,342	465,615	77,779,196	0.0321	0.0738
160	42,578,043	37,451,886	136,909	80,166,839	0.0330	0.1068
170	38,566,835	35,030,475	0	73,597,310	0.0303	0.1372
180	28,688,164	23,170,214	0	51,858,377	0.0214	0.1586
190	37,990,749	26,809,682	0	64,800,431	0.0267	0.1853
200	39,540,633	30,290,925	0	69,831,557	0.0288	0.2141
210	58,299,102	39,244,013	0	97,543,115	0.0402	0.2543
220	54,928,146	49,136,929	0	104,065,075	0.0429	0.2972
230	63,259,399	44,455,553	0	107,714,952	0.0444	0.3416
240	51,917,081	50,526,362	0	102,443,443	0.0422	0.3838
250	51,385,793	44,727,136	0	96,112,929	0.0396	0.4234
260	50,732,148	48,812,268	0	99,544,416	0.0410	0.4645
270	49,803,622	34,855,741	0	84,659,363	0.0349	0.4993
280	49,278,206	36,722,766	0	86,000,973	0.0355	0.5348
290	51,839,818	39,789,560	0	91,629,378	0.0378	0.5726
300	54,500,996	35,277,298	0	89,778,294	0.0370	0.6096
310	58,533,930	32,941,609	0	91,475,539	0.0377	0.6473
320	67,226,822	42,361,944	0	109,588,766	0.0452	0.6925
330	72,914,824	37,602,949	0	110,517,773	0.0456	0.7380
340	69,670,244	37,108,330	0	106,778,573	0.0440	0.7820
350	66,530,306	37,201,550	0	103,731,856	0.0428	0.8248
360	45,930,244	38, 163, 391	0	84,093,636	0.0347	0.8595
370	25,961,551	47,821,416	0	73,782,968	0.0304	0.8899
380	22,914,627	46,007,786	0	68,922,414	0.0284	0.9183
390	5,082,653	36,909,039	0	41,991,693	0.0173	0.9356
400	2,495,425	39,207,960	0	41,703,384	0.0172	0.9528
410	3,011,672	28,438,195	0	31,449,867	0.0130	0.9657
420	130,535	27,152,546	D	27,283,081	0.0112	0.9770
430	409,836	17,687,708	0	18,097,544	0.0075	0.9845
440	0	13,569,432	0	13,569,432	0.0056	0.9900
450	85,129	9,954,863	0	10,039,993	0.0041	0.9942
460	0	5,477,335	0	5,477,335	0.0023	0.9964
470	0	4,213,706	0	4,213,706	0.0017	0.9982
480	0	1,901,058	0	1,901,058	0.0008	0.9990
490	0	1,200,383	0	1,200,383	0.0005	0.9995
500	0	1,006,516	· O ,	1,006,516	0.0004	0.9999
510	0	301,005	0	301,005	0.0001	1.0000
Total	1,264,912,136	1,159,272,060	1,725,549	2,425,909,745		

Table F-5. --Population estimates by sex and size group for <u>Hippoglossoides</u> spp.

Length						Cumulative
(mm) 	Nales	Females	Unsexed	Total	Proportion	proportion
110	79,916	0	0	79,916	0.0001	0.0001
120	79,916	79,916	0	159,832	0.0002	0.0003
130	79,916	159,832	0	239,749	0.0003	0.0006
140	655,854	377,773	U	1,011,407	0.0014	0.0020
160	043,990 790 831	241,107 411 826	0	1 302 657	0.0012	0.0052
170	1 434 345	562 650	ů	1 996 996	0.0027	0.0077
180	1,891,381	1,286,577	ŏ	3,177,958	0.0043	0.0120
190	2,641,362	908,713	Ō	3,550,074	0.0048	0.0168
200	3,641,705	2,916,187	0	6,557,892	0.0088	0.0256
210	2,353,566	2,061,420	0	4,414,987	0.0059	0.0315
220	2,477,853	3,190,017	0	5,667,870	0.0076	0.0392
230	2,353,768	2,971,529	0 .	5,325,297	0.0072	0.0463
240	4,074,099	3,654,784	Ŭ	1, (28, 882	0.0104	0.0507
250	0,014,432	5,774,745	0	10,009,177	0.0145	0.0710
200	10 48/ 01/	5 371 926	0	16 056 837	0.0216	0.1102
280	11,586,420	6.183.305	ŏ	17,769,724	0.0239	0.1340
290	24,136,852	7,445,405	Ō	31.582.257	0.0424	0.1765
300	17,429,564	9,024,145	0	26,453,709	0.0355	0.2120
310	25,173,850	9,830,267	0	35,004,118	0.0470	0.2591
320	26,285,895	11,812,773	0	38,098,668	0.0512	0.3103
330	31,767,948	10,347,234	0	42,115,182	0.0566	0.3669
340	45,087,324	10,499,608	0	55,586,932	0.0747	U.4410 0 519/
350	45,102,115	12,075,005	0	57,177,121	0.0/68	0.5164
300	34,737,372 37 815 /20	13 523 054	0	41 330 373	0.0556	0.6372
380	16.051 907	11,976,501	ŏ	28.028.408	0.0377	0.6749
390	7,442,619	14, 123, 375	Õ	21,565,994	0.0290	0.7039
400	3,292,985	15,309,036	Ō	18,602,020	0.0250	0.7289
410	1,559,750	20,483,604	0	22,043,354	0.0296	0.7585
420	1,323,470	22,550,541	0	23,874,012	0.0321	0.7906
430	55,606	21,972,916	0	22,028,522	0.0296	0.8202
440	57,228	25,804,264	0	25,861,492	0.0348	0.8549
450	U 74/ 45/	23,802,375	U	23,802,375	0.0320	0.0009
460	514,100	19,703,403	U O	20,079,201	0.0270	0.9139
470	272 067	15 102 298	0	15 374 365	0.0207	0.9598
400	212,001	12 502 783	0	12 502 783	0.0168	0.9766
500	ŏ	6,881,864	ŏ	6.881.864	0.0092	0.9859
510	55.606	3,475,079	Ō	3,530,684	0.0047	0.9906
520	0	2,985,426	0	2,985,426	0.0040	0.9946
530	0	2,167,104	0	2,167,104	0.0029	0.9976
540	Q	657,631	0	657,631	0.0009	0.9984
550	0	245,411	0	245,411	0.0003	0.9988
560	0	(58,854	U	/20,024	0.0010	U.7778 1 0000
590	<u> </u>	100,001		127,001	0.0002	1.0000
Total	367,782,490	376,365,635	0	744, 148, 125		

Table F-6.--Population estimates by sex and size group for Alaska plaice.

(mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
90	0	0	494,926	494,926	0.0281	0.0281
100	182,217	36,234	915,479	1,133,930	0.0643	0.0924
110	187,359	36,234	1,291,774	1,515,368	0.0859	0.1783
120	909,674	137,056	858,029	1,904,759	0.1080	0.2863
130	283,205	108,703	144,513	536,421	0.0304	0.3167
140	100,822	100,822	72,257	273,901	0.0155	0.3322
150	0	53,899	0	53,899	0.0031	0.3353
170	144,513	88,641	0	233, 154	0.0132	0.3485
180	108,491	133,453	0	241,944	0.0137	0.3622
190	198,412	180,873	0	379,285	0.0215	0.3837
200	173,291	0	0	173,291	0.0098	0.3936
210	100,822	378,805	0	479,627	0.0272	0.4208
220	337,173	0	0	337, 173	0.0191	0.4399
230	198,412	118,023	0	316,436	0.0179	0.4578
240	0	332,848	0	332,848	0.0189	0.4767
260	144,639	Û	0	144,639	0.0082	0.4849
270	0	52,407	0	52,407	0.0030	0.4879
280	144,725	201,644	0	346,369	0.0196	0.5075
290	86,438	<b>86,9</b> 30	0	173,368	0.0098	0.5174
300	185,344	173,291	0	358,635	0.0203	0.5377
310	154,258	123,164	0	277,422	0.0157	0.5534
320	174,735	0	0	174,735	0.0099	0.5633
330	146,137	0	0	146,137	0.0083	0.5716
340	144,639	86,438	0	231,076	0.0131	0.5847
350	0	339,592	0	339,592	0.0193	0.6040
360	118,023	151,026	0	269,049	0.0153	0.6192
370	0	208,917	0	208,917	0.0118	0.6311
380	0	328,459	0	328,459	0.0186	0.6497
390	36,234	0	0	36,234	0.0021	0.6518
400	100,822	108,491	0	209,313	0.0119	0.6636
410	36,234	235,234	0	271,468	0.0154	0.6790
420	255,157	465,325	0	720,482	0.0409	0.7199
430	246,970	225,796	0	472,766	0.0268	0.7467
440	324,021	90,134	0	414,154	0.0235	0.7702
450	208,157	53,899	0	262,056	0.0149	0.7850
460	186,888	424,242	0	611,130	0.0347	0.8197
470	146,612	144,639	0	291,251	0.0165	0.8362
480	86,930	251,475	0	338,405	0.0192	0.8554
490	53,899	86,930	Ū	140,829	0.0080	0.8634
500	53,899	0	0	53,899	0.0031	0.8664
510	458,811	0	Ŭ	458,811	0.0260	0.8924
520	U	61,196	U	61,196	0.0035	0.8959
570	U	150,653	U	150,653	0.0085	0.9045
620	0	135,659	Ŭ	135,659	0.0077	0.9121
640	32,630	0	U	32,630	0.0019	0.9140
670	145,042	86,930	Ŭ	231,9/1	0.0132	0.92/1
080	U	243,300	0	243,300	0.0156	0.9409
730	U	150,655	Ŭ	150,653	0.0085	0.9495
800	U	117,210	Ŭ	117,210	0.0066	0.9561
810	U	187,337	0	107,337	0.0106	0.9668
830	U	100,407	U	100,407	0.0057	0.9725
870	U	150,653	Ů,	150,653	0.0085	0.9810
890	U	50,203	U	50,205	0.0028	0.9838
900	Ŭ	50,205	Ű	50,205	0.0028	0.986/
910	U	104,551	U A	184,551	0.0105	0.9972
920	<u> </u>		<u> </u>		0.0028	1.0000
Total	6,595,636	7,262,830	3,776,977	17,635,444	•	

Table F-7. -- Population estimates by sex and size group for Greenland turbot.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
90	0	0	157, 135	157, 135	0.0002	0.0002
100	365,064	0	0	365,064	0.0004	0.0006
110	234,838	0	0	234,838	0.0003	0.0008
120	201,444	JC2,881	U	014,323	0.0007	0.0015
140	1.746.683	845.382	ů 0	2.592.065	0.0028	0.0047
150	2,912,124	2,706,758	Õ	5,618,882	0.0060	0.0108
160	4,759,394	7,210,837	0	11,970,231	0.0128	0.0236
170	6,249,788	9,469,084	0	15,718,872	0.0169	0.0405
180	5,587,571	7,686,198	0	13,273,768	0.0142	0.0547
200	5,950,515	6,930,301	U	9 343 040	0.0139	0.0000
210	2,581,052	3,924,893	ů	6,505,945	0.0070	0.0856
220	1,892,207	2,989,645	ŏ	4,881,852	0.0052	0.0908
230	4,274,580	3,028,979	0	7,303,559	0.0078	0.0987
240	6,691,972	6,118,145	0	12,810,117	0.0138	0.1124
250	11,512,332	11,428,742	0	22,941,074	0.0246	0.1371
200	10,922,100	21 /51 791	0	40 954 438	0.0337	0.1707
280	20,603,431	24.705.311	ů	45,308,743	0.0486	0.2633
290	23,492,676	35, 329, 337	Ō	58,822,013	0.0631	0.3265
300	16,986,114	32,564,831	0	49,550,945	0.0532	0.3797
310	14,577,515	27,927,125	0	42,504,640	0.0456	0.4253
320	14,727,456	24,748,843	0	39,476,299	0.0424	0.40//
330	10,072,072	30 166 691	0	43,072,798	0.0456	0.5594
350	8.747.974	29.775.839	õ	38,523,813	0.0414	0.6008
360	7,875,024	22,604,471	Ō	30,479,495	0.0327	0.6335
370	8,192,065	17,059,290	0	25,251,355	0.0271	0.6606
380	9,761,928	16,469,357	0	26,231,285	0.0282	0.6888
390	6,576,498	11,013,910	0	17,590,408	0.0189	0.7077
400	12,950,921	14 991 110	0	26,934,910	0.0289	0.7673
420	9.086.609	16,442,658	õ	25.529.267	0.0274	0.7947
430	5,965,134	21,084,814	Ō	27,049,948	0.0290	0.8237
440	4,991,850	22,945,766	0	27,937,616	0.0300	0.8537
450	2,543,778	21,310,084	0	23,853,863	0.0256	0.8793
460	5,047,865	18,310,146	U	21,358,011	0.0229	0.9022
470	2,039,092	8 410 459	0	9 525 305	0.0102	0.9274
490	1.033.473	7.675.191	õ	8,708,664	0.0093	0.9368
500	2,059,880	4,688,433	Ő	6,748,313	0.0072	0.9440
510	227,949	5,459,040	0	5,686,989	0.0061	0.9501
520	95,676	4,291,035	0	4,386,711	0.0047	0.9548
530	667,008	4,133,657	U	4,800,665	0.0052	0.9600
550	346 524	3,261,722	0	3,608,052	0.0039	0.9679
560	1.340.790	4,253,902	Ō	5,594,692	0.0060	0.9739
570	31,197	4,452,869	0	4,484,066	0.0048	0.9787
580	295,410	3,676,462	0	3,971,872	0.0043	0.9830
590	0	2,967,658	0	2,967,658	0.0032	0.9862
600	<b>3</b> 54,433	3,210,282	0	2,704,727 2,775,408	0.0040	0.9902
620	0	1 208,665	ŏ	1,208,665	0.0013	0.9945
630	ŏ	2,680,824	ŏ	2,680,824	0.0029	0.9974
640	Ō	1,023,154	0	1,023,154	0.0011	0.9985
650	0	194,937	0	194,937	0.0002	0.9987
660	295,410	520,896	0	816,306	0.0009	0.9995
670	0	209,918	0	209,918	0.0002	0.9998
690 700	U A	127,320 80 587	0	89 587	0.0001	1,0000
100	<u> </u>		~		0.0001	
Total	313,832,990	617,643,586	157,135	931,633,711		

Table F-8. --Population estimates by sex and size group for <u>Atheresthes</u> spp.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
120	0	0	20 542	20 542	0,0005	0 0005
150	ŏ	ŏ	64,901	64,901	0.0001	0.0016
160	ō	Ō	169,587	169.587	0,0028	0.0044
170	0	Ó	245,269	245,269	0,0041	0.0085
180	0	Q	297,786	297,786	0.0050	0.0134
190	0	0	533,169	533,169	0.0089	0.0223
200	0	0	374,527	374,527	0.0062	0.0285
210	U	U	638,683 7// 805	638,683	0.0106	0.0392
220	0	0	J44,60J 726 053	244,802 726 053	0.0007	0.0449
240	ů N	ů	1 248 668	1 248 668	0.0208	0.0378
250	ŏ	Ď	1,505,669	1,505,669	0.0251	0.1028
260	Ō	Ō	2,341,794	2,341,794	0.0390	0.1418
270	Û	0	2,545,553	2,545,553	0.0424	0.1842
280	0	0	3,876,273	3,876,273	0.0645	0.2487
290	0	0	5,747,848	5,747,848	0.0957	0.3444
300	0	0	5,918,593	5,918,593	0.0985	0.4429
210	U	U	3,047,974	2,04/,9/4	0.0940	0.5369
330	0	32 660	2 261 665	2 294 325	0.0625	0.3992
340	ŏ	32,660	1 692 180	1 774 841	0.0287	0.6661
350	ŏ	0	1,295,544	1.295.544	0.0216	0.6877
360	0	0	725,318	725,318	0.0121	0.6997
370	0	0	670,719	670,719	0.0112	0.7109
380	0	32,660	412,692	445,352	0.0074	0.7183
390	0	0	339,310	339,310	0.0056	0.7240
400		0	530,221	530,221	0.0088	0.7328
410	32,000	77 440	191,292	225,952	0.0037	0.7365
420	0	32,000	220,049	291,309	0.0049	0.7414
440	ů.	ů N	400 300	490 300	0.0047	0.7460
450	ŏ	× 0	846,245	846,245	0.0141	0.7683
460	Ō	Ō	397, 195	397, 195	0.0066	0.7749
470	′ <b>O</b>	0	535,791	535,791	0.0089	0.7838
480	0	0	561,255	561,255	0.0093	0.7932
490	0	0	208,883	208,883	0.0035	0.7966
500	U	· 0	245,782	245,782	0.0041	0.8007
510	/1 752	U	141,103	14/,/03	0.0025	0.8052
520	41,72	0	265 303	225,500	0.0036	0.8009
540	ŏ	ő	221 393	221 393	0.0037	0.8147
550	õ	ō	367,873	367,873	0.0061	0.8208
560	0	0	252,852	252,852	0.0042	0.8250
570	0	0	198,869	198,869	0.0033	0.8283
580	0	0	361,776	361,776	0.0060	0.8344
590	0	0	253,673	253,673	0.0042	0.8386
600	0	U	165,159	165,159	0.0027	0.8413
610 420	ů N	0	286 810	210,070	0.0035	0.0440
620	ő	ň	420 998	420,998	0 0070	0.0495
640	ŏ	32,660	421,076	453,736	0.0076	0.8641
650	32,660	0	674,685	707,345	0.0118	0.8759
660	0	0	365,878	365,878	0.0061	0.8820
670	0	0	310,808	310,808	0.0052	0.8871
680	0	0	297,484	297,484	0.0050	0.8921
690	0	0	168,079	168,079	0.0028	0.8949
700	41,752	U	411,555	455,100	0.00/5	0.9024
710	U	U 0	334,383 187 479	127 4,303 127 472	0.0000	0.9080
720	U A	n n	05 233	05 277	0.0016	0.9110
740	0	0	246.804	246 804	0.0041	0.9120
750	0	õ	353,829	353.829	0.0059	0.9226
760	Ō	Ō	146,570	146.570	0.0024	0,9251
770	Ō	0	156,971	156,971	0.0026	0.9277

Table F-9. --Population estimates by sex and size group for Pacific halibut.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
780	. 0	0	71,773	71.773	0,0012	0 9289
790	0	0	262,059	262,059	0.0044	0.9332
800	0	0	112,226	112,226	0.0019	0.9351
810	0	0	76,079	76,079	0.0013	0.9364
820	. 0	0	373,787	373,787	0.0062	0.9426
830	0	0	279,082	279,082	0.0046	0.9472
840	0	0	236,572	236,572	0.0039	0.9512
850	0	0	130, 185	130, 185	0.0022	0.9533
860	0	0	127,012	127,012	0.0021	0,9555
870	0	0	267,091	267,091	0.0044	0.9599
880	0	0	63,522	63,522	0.0011	0.9610
890	. 0	0	307,922	307,922	0.0051	0.9661
900	0	0	19,624	19,624	0.0003	0.9664
910	0	0	262,459	262,459	0.0044	0.9708
920	0	0	214, 144	214,144	0.0036	0.9743
930	0	0	135,472	135,472	0.0023	0.9766
940	0	0	210,309	210,309	0.0035	0.9801
950	0	0	24,168	24,168	0.0004	0.9805
960	0	0	65,418	65,418	0.0011	0.9816
970	0	0	109,061	109,061	0.0018	0.9834
980	0	0	50,322	50,322	0.0008	0.9842
<b>9</b> 90	0	0	22,358	22,358	0.0004	0.9846
1010	0	0	28,831	28,831	0.0005	0.9851
1020	0	0	26,453	26,453	0.0004	0.9855
1030	0	0	85,510	85,510	0.0014	0.9870
1040	0	0 -	119,828	119,828	0.0020	0.9890
1060	0	0	16,524	16,524	0.0003	0.9892
1090	0	0	59,279	59,279	0.0010	0.9902
1100	0	0	81,638	81,638	0.0014	0.9916
1120	0	· 0	88,019	88,019	0.0015	0.9930
1130	0	0	32,390	32,390	0.0005	0.9936
1170	0	0	30,358	30,358	0.0005	0.9941
1180	0	0	29,410	29,410	0.0005	0.9946
1220	, <b>O</b>	0	28,219	28,219	0.0005	0.9950
1230	0	0	49,168	49, 168	0.0008	0.9959
1250	0	0	77,103	77,103	0.0013	0.9972
1260	0	0	44,104	44, 104	0.0007	0.9979
1340	0	0	32,200	32,200	0.0005	0.9984
1460	0	0	33,020	33,020	0.0005	0,9990
1580	0	0	29,827	29,827	0.0005	0.9995
1760	0	0	32,020	32,020	0.0005	1.0000
Total	148,824	163,302	59,763,285	60,075,410		

Table F-9. --Continued.

#### APPENDIX G

#### Age-Length Keys for Principal Fish Species

Appendix G presents age-length keys for principal species of fish by sex and sexes combined. Lengths are expressed in millimeters. Asterisks indicate ages affected by the linear interpolation used to assign age distributions to length classes (in the age-length key) not represented by collected age data.

#### List of Tables

# Table Page G-1. Walleye pollock 154 G-2. Pacific cod 160 G-3. Yellowfin sole 168 G-4. Rock sole 171

# Table G-1.--Age-length keys for walleye pollock sampled during the 1990 eastern Bering Sea bottom trawl survey.

MALE KEY

• •

MALE KEY

. .

LEN	AVG	STD.	FRFO-	AGE	(1)	YÉA	RSI			_								_	_		_			_						
GTH	AGE	DEV.	UENCY	Ō	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	. 17	18	19	20	21	22	23	24	25	26+
600	11.62	1.04	13	0	0	0	0	0	0	0	0	0	0	3	1	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0
610	11.36	1.54	14	0	0	0	0	0	0	0	0	1	0	3	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
630	11.11	1.05	9	ŏ	ŏ	ŏ	Ő	Ö	ŏ	0	0	0	0	4		5	1	2	0	1	0	U 0	0	0	0	0	0	0	0	0
640	12.86	2.54	7	Ó	Ó	Ó	Ō	Ŏ	Ō	ō	ŏ	ŏ	ō	1	ō	4	ŏ	ĭ	ŏ	ŏ	ŏ	ĭ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
650	12.57	2.99	7	0	0	0	0	0	0	0	0	1	0	0	0	4	0	1	0	0	0	1	Ō	Ō	Ō	Ō	Ŏ	Õ	Ō	ō
670	16 33	1.55	6	0	0	0	0	0	0	0	0	0	0	0	0	4	0	1	1	Õ	0	0	0	0	0	0	0	0	0	0
680	12.00	0.00	ž	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ő	ň	0	ň	ň	2	<b>1</b>	1	1		0	0	0	0	U A	0	U	0	0	0
690	12.00	0.00	2	Ō	Õ	Ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ž	ŏ	ŏ	ŏ	Ū	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
700	13.33	1.15	3	0	0	0	0	0	0	0	0	0	0	0	0	1	Ó	2	Ō	Ō	Ō	Ō	Ō	Õ	Ŏ	ŏ	ŏ	Õ	ŏ	ō
* 710	13.00	1.41	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0. <b>0</b>	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
720	12.00	0.00	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
* 730	13.50	0.00	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	<b>0.0</b>	0.5	0 <b>.0</b>	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
740	15.00	0.00	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	Ó	0	0
750	16.00	0.00	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
* 760	14.67	0.00	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	<u>3</u> 0.0	3333	0.0	0.0	0.0	6667	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<b>*</b> 770	13.33	0.00	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	<i>ه.</i> 0.0	5667	0.0	0.0	o.o	3333	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	<b>0.</b> 0
780	12.00	0.00	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	7.67	3.57	578.0	0.0	18.0	40.0	3 14.0	89.0 3	10 58.0	9.0	31.0	79.0	!4.0	52.0	9 13.0	97.5	9.0	13.0	4.5	5.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0 <b>.0</b>	0.0

· .

FEMALE KEY

LEN GTH	AVG AGE	STD. DEV.	FREQ- UENCY	AGE O	(IN 1	YEAR 2	s) 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 2	6+
160 170 180 190 200 210 220 230 240 250	1.00 1.00 1.00 2.00 2.00 2.00 2.00 2.00	0.00 0.63 0.00 0.00 1.41 0.00 0.00 0.32 0.46	6 6 3 1 2 7 4 10 8	0 0 0 0 0 0 0 0 0	6 5 3 0 1 0 0 0	0 1 0 1 0 7 4 9 6	0 0 0 0 0 1 0 0 1 2											0 0 0 0 0 0 0 0											0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
260 * 270	2.14	0.38		0.0	U	o 3.5		0.0	U	0.0	U	0.0	0	0.0	U	U 0.0		0.0		0.0	0	0.0	0	0.0	U	0.0		0.0	, 0	.0
280 290 * 300	2.00 3.00 3.00	0.00 1.41 1.00	4.0 1 2 2.0	0 0 0.0	0.0 0 0	1 1 0.5	0.5	0 1 0.5	0.0 0 0.0	0 0 0.0	0.0 0 0.0	0 0 0.0	0.0 0 0.0	0 0 0.0	0.0 0 0.0	0 0 0.0	0.0 0 0.0	0 0 0.0	0.0 0 0.0	0 0 0.0	0.0 0 0.0	0 0 0.0	0.0	0 0 0.0	0.0 0 0.0	0 0 0.0	0.0 0 0.0	0 0 0.0	0.0 0 0.0	0 0
310 320 330 340 350 380 390 400 410 420 430 440 450 450 460 470 480 500 510	3.00 5.00 4.00 4.22 4.88 4.58 5.38 5.365 6.70 5.90 6.75 6.72 6.81 6.90 7.75	0.00 0.71 0.00 0.53 0.00 0.83 1.36 0.67 0.96 1.00 0.68 0.94 0.45 1.52 1.53 1.11 1.02 1.71	2 1 2 8 4 7 9 8 12 16 20 20 18 20 20 20		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	201011000000000000000000000000000000000	001263764642200000000	010010013535453110110	0 0 0 0 0 1 0 1 8 8 4 12 6 12 8 4 8 8 6	00000000011011252031	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000
520 530 540 550	8.47 7.95 9.75 9.95	1.68 1.57 2.00 2.01	19 20 20 19	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	2 5 1	2 1 0 1	9 7 4	1 2 0 1	5 2 6 4	0 1 2	2 1 4 5	0 0 0 1	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	U 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0

£ .

· · · · ·

Table G-1.--Continued.

FEMALE KEY

LEN	AVG	STD.	FREQ-	AGE	CIN	YEAR	S)														÷			· · ·						—
GTH	AGE	DEV.	UENCY	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26+
				_	_		_	_	-			_	_		_	_	_													_
560	10.79	3.22	19	Ő	Õ	0	0	0	0	0	0	5	3	2	0	8	0	0	0	0	0	0	0	0	0	1	0	0	0	0
570	10.00	1.75	17	U	U	U	U	0	0	0	0	6	0	5	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
500	10.33	2.00	20	Ŭ	Ŭ	Ů	Ŭ	0	U	0	U V	2	2	4	0	2	0	0	U	U	0	1	0	0	0	0	0	0	0	0
600	11 50	2 25	16	ň	ň	ň	ň	ň	ň	0	0	4		2	Ň	2		-	0	Ŭ	0	1	0	U A	0	U	Ű	Ŭ	U O	Ű
610	11 47	1 46	15	ň	ŏ	ň	ň	ň	ň	ň	ň		ň	~	ň	'7	1		1	Ň	Ň		Ň	0	Ň	Ň	0	Ň	Ň	Ň
620	11.93	1.64	14	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	1	2	ň	6	'n	ň	; ;	ň	ň	ň	ň	ň	ň	ň	ň	Ň	Ň	Ň
630	11.82	1.08	11	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ó	5	ŏ	Ŕ	ň	1	ñ	ň	ŏ	ň	ŏ	ň.	ň	ň	ň	ň	ň	ň
640	12.10	1.20	10	ō	ŏ	ŏ	ŏ	ŏ	ō	ō	ŏ	ŏ	ŏ	1	ŏ	Ř	ñ	ò	ĭ	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň
650	11.54	1.51	13	Ō	Õ	ŏ	ō	ō	ŏ	õ	ŏ	ō	ō	Ś	ŏ	6	Ť	ŏ	1	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
660	12.25	2.05	12	0	0	0	0	0	0	Ó	Ō	Ō	Ó	2	1	6	2	Ō	Ō	Ō	Ō	1	Õ	Ō	ŏ	Õ	ŏ	ō	ō	ŏ
670	12.11	1.05	9	0	0	0	0	0	0	0	0	0	0	1	Ō	6	1	1	0	Ó	Ó	Ó	Ō	Ō	Ō	Ŏ	Ŏ	ŏ	Õ	ŏ
680	12.11	1.27	9	0	0	0	0	0	0	0	0	0	0	1	1	5	0	2	0	0	0	0	0	0	0	0	Ó	Ō	Ö	Ó
690	11.67	0.50	9	0	0	0	0	0	0	0	0	0	0	0	3	6	0	0	0	0	0	0	0	0	0	0	0	Ó	Ó	Ō
700	12.50	1.57	12	0	0	0	0	0	0	0	0	0	0	1	0	8	1	0	1	1	0	0	0	0	0	0	0	0	0	0
710	11.83	0.98	6	0	0	0	0	0	0	0	0	0	0	1	0	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0
720	12.67	1.15	3	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0
* 730	13 00	1 63		0 0		<b>^</b> ^		• •	0			<u> </u>		• •		4 6		0 E		• •		• •		~ ~		~ ~		~ ~		• •
130	13.00	1.05	25	0.0	0 0	0.0	0 0	0.0	ດດັ		0 0	0.0	n n	0.0	n n	1.5	በበ	0.5	05	0.0	<b>n</b> n	0.0	0 0	0.0	<u> </u>	0.0	<b>^</b> ^	0.0	• •	0.0
			L.,		•.•		0.0		0.0		0.0		0.0		0.0		0.0		0.5		0.0		0.0		0.0		0.0		0.0	
740	13.50	2.12	2	0	0	0	0	0	Ö	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	n	n	0	0	٥
750	17.00	1.41	2	0	0	0	0	0	0	0	Ó	Ó	Ō.	Ō	Ő	Ó	Ó	Ō	Ò	1	ō	1	ŏ	ō	ō	ŏ	ō	ō	ŏ	ŏ
760	13.50	3.54	2	0	0	0	0	0	0	0	0	0	0	0	1	Ö	Ō	Ō	Ō	1	Ō	Ō	Õ	Õ	Ō	õ	ŏ	ŏ	ŏ	õ
770	12.00	0.00	2	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó
780	14.00	0.00	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	. 0	0	0	0	0	0	0	0	0	0	0
790	15.00	0.00	1	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
TOTAL	7 07	7 44		0 0	,	0.0		. 5	415	0	~				10	о с		0 F		7 0		, .		~ ~						• •
IUIAL	1.75	3.04	631.5	0.0	8.0	1	2.5	יד. יד	5.0	,	יח וי	7.0	د ۵۵	7.0	0 0	0.J 1	0 0	¥.J	85	3.0	0 0	4.0	0 0	0.0	0 0	1.0	• •	0.0	• •	<b>U.U</b>
					0.0								v		/.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	

157

SEXES COMBINED

.CN STH	AVG AGE	STD. DEV.	FREQ- UENCY	AGE O	(IN 1	YEAR: 2	s) 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 26
80	1.00	0.00	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
90	1.00	0.00	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
100	1.00	0.00	4	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
110	1.00	0.00	5	0	5	0	0	0	0	0	0	0	0	Ő	0	0	0	0	0	Q	0	0	0	0	0	0	0	0	0
120	1.00	0.00	2	Ŭ	5	0	0	U	0	0	U	Ŭ	U	Ŭ,	U	U	U	0	U	U U	Ŭ	U	Ű	Ű	U	U	U	U	U
130	1.00	0.00	0	U	0	0	0	U	0	U	Ŭ	U	U	Ŭ	Ŭ	Ŭ	Ŭ	Ň	Ŭ	0	0	Ŭ	Ŭ	Ň	Ň	Ŭ	Ŭ	Ň	U O
140	1.00	0.00		0		U	0	U	U	U	Ŭ	Ŭ	U	Ŭ	U	U	U	U N	U	U V	Ŭ	U	v v	v v	v	Ű	Ŭ	v v	U I
150	1.00	0.00	11	Ű		U	Ŭ	U O	U V	U	Ŭ	ů	Ŭ	0	U N	0	Ŭ		v	Ň	0	ů,	Ŭ	Ŭ	Ŭ	Ň	0	0	Ň
100	1.00	0.00	14	0	14	U I	Ŭ	U A	Ň	0	Ŭ	0	0	Ň	0	Ŭ	0	0	Ň	Ň	Ň	0	0	Ň	Ň	ň	0	ň	Ň
170	1.07	0.20	15	ů,	14	1	Ň	Ň	Ň	Ň	0	ů N	Ň	Ň	5	Ň	Ň	0	0	Ň	0	Ň	ň		Ň	ň	ň	ň	Ň
100	1 1/	0.00	<u>'</u>	0		4	Ň	Ň	Ň	Ň	ň	ň	Ň	Ň	Ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
190	2 00	0.30	<b>'</b>	Ň	0	7	Ň	Ň	ň	ň	ň	Ň	Ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	Ň	Ň	ň	ň	ň
210	2.00	1 15	<b>'</b>	ň	2	'n	1	ň	ň	ň	ň	ň	ň	ň	ň	ň	ត	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
220	2 08	0.28	17	ň	<b></b>	12	1	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ŏ	ň
220	2.00	0.20	12	ň	ň	11	1	ň	ň	ň	ň	ň	ň	ň	ň	ň	ŏ	ň	ŏ	ň	ň	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
240	2 05	0.27	20	ŏ	ň	10	i	ň	ŏ	ň	ň	ň	ň	ŏ	ŏ	ň	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ō	ō	ŏ	ō	ō	ō	ŏ
250	2 15	0.38	13	ŏ	ň	ii	2	ŏ	ŏ	ň	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ō	ō	ŏ	ŏ	ŏ
260	2 25	0.62	12	ŏ	ŏ	10	1	ĭ	ŏ	ň	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ō	ō	ŏ	ŏ	ŏ	ŏ	ō	ō	ŏ	ō
270	2.00	0.00	7	ŏ	ŏ	7	ò	ò	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ō	ŏ	ŏ	ŏ	ō	ō	ō	Ō	Õ	Ō	Õ	Ō	Õ	Õ	ŏ
280	2.75	0.71	8	ō	ō	3	ž	1	Ō	ō	Ō	Õ	ŏ	Ō	Ō	Ŏ	Ō	Õ	Õ	Ō	Ō	Ō	Ó	Ō	Ó	Ō	Ō	Ó	Ó
290	2.75	0.96	4	ŏ	ŏ	2	i	1	ŏ	ŏ	ŏ	ŏ	ŏ	ō	Õ	ŏ	Ō	Ō	Ō	Ō	Õ	Ō	Ő	Õ	Ó	Ō	Ő	Ō	Õ
300	2.50	0.71	ź	Ŏ	Õ	Ĩ	1	Ó	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ó	Ō	Ó	Ō	Ó	0	0	0	0	0	0	0
310	3.00	0.00	Ĩ	Ō	Õ	Ó	4	Ó	0	Ō	Ō	Ó	Ó	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0
320	3.50	0.84	6	0	0	0	4	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
330	3.50	0.84	6	0	0	1	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
340	4.00	0.00	4	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
350	4.00	0.50	9	0	0	0	1	7	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
360	3.90	0.32	10	0	0	0	1	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
370	4.14	0.36	14	0	0	0	0	12	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
380	4.42	0.84	19	0	0	0	1	12	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
390	5.00	1.17	20	0	0	0	0	9	5	4	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ű	U
400	5.32	1.19	28	0	0	0	0	8	2		2	2	U	U	U	Ű	U U	U	U O	U	Ű	U	U	U	U	U O	0	0	0
410	2.59	1.02	54	U	Ű	U	Ŭ	ç	8	15	4	1	Ŭ	Ű	Ŭ	Ŭ	U V	0	Ŭ	U N	Ŭ	U	U 0	Ű	Ŭ	Ŭ	Ŭ	Ň	Ŭ
420	5.92	0.97	30	Ű	U	Ű	Ŭ	Ş		18	õ	4	1	ů.	Ň	Ŭ	Ŭ	0	Ň	Ŭ	0	0	Ŭ	0	Ň	0	0	Ň	Ň
430	5.05	0.95	40	Ŭ,	Ŭ	0	Ň	4	10	23	Š	;		Ň	0	Ň	0		0	0	Ň	0	Ň	ů,	Ň	Ň	0	Ň	Ň
440	2.92	0.90	40	U C	Ű	0	Ŭ			23	4	4 2	U A	Ň	0	Ŭ	U A	Ŭ	Ň	0	0	0	0	U A	U N	Ň	0	0	0
430	0.03	0.04	40	0	v v	0	0	U A	2	30	2	11	0	0	Ň		U A	0	0	0	0	0	0	0	0	ň	0	0	2
400	0.03	1.32	41	U U	U V	U n	0	0	4	10	2		2	0	Ň		0	0	0	0	0	Ň	0	0	ň	ň	ŏ	ň	ň
470	0.14	1.00	20	0	0	ň	ň	ň	2	17	6	18	2	ň	ň	ň	1	ň	ň	ñ	0	ň	ň	0	ň	ň	ň	ň	ň
400	1.31	0.00	37	0	0	ň	ň	۰ ۸	1	17	ž	14	ĥ	ň	ň	ň		ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
47U 500	7 80	2 02	00	0	0	ň	ດ ດ	0	2	10	Å	15	4	2	ň	7	ň	ň	ĭ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
500	7.00	1 50	40	0	0	ň	ň	ň	ñ	7	5	23	1	ñ	ň	2	ŏ	ň		ň	ň	ň	ŏ	ő	ŏ	ŏ	ň	ŏ	ŏ
570	7.7J B 02	1 07	40	0 0	ň	ň	ň	ň	ň		ž	13	5	ŏ	ĭ	2	ň	ĭ	ň	ň	ň	ň	ŏ	ň	ŏ	ŏ	ŏ	ŏ	ŏ
20	0.72	1.73	37		Š	~	Ň	Ň	~	7		10	5	~		7	ž		š	ž	ž	š	ž	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	š	ž	ž	ž	č

.

General and the second s

SEXES COMBINED

.

1.6.1	AVC	CTD	<b>EDEO</b> -	A C F	7.84	VE 40	<u></u>						_																	
GTH	AVG	DEV.	UENCY	AGE Q	1 	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26+
540	9.88	1.83	40	0	0	0	0	0	0	1	0	13	1	13	1	9	1	1	0	0	0	0	0	0	0	0	0	0	0	0
550	10.19 10 R1	1.91	36	0	0	0	0	0	0	2	1	5	3	9	3	11	2	0	0	0	0	· . 0	0	0	0	0	0	0	0	0
570	10.76	1.74	37	ŏ	Ő	Ő	0 0	Ő	0	ň	ň	2	1	8	4	12	1	2	0	0	Ŭ	0	0	0	0	1	0	0	0	0
580	10.19	2.13	32	· ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ģ	4	7	2	9	ò	0	ŏ	ŏ	ŏ	1	ň	ň	ů N	ñ	ň	ň	ň	ů N
590	10.74	1.64	34	Ó	Ō	Ō	Ō	Ō	Ő	Õ	Õ	5	Ż	10	ō	15	1	ī	ō	ŏ	ŏ	ö	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
600	11.55	1.78	29	0	0	0	0	0	0	0	0	1	0	9	1	14	2	1	0	0	0	1	0	Ō	Ō	Ó	Ō	Ō	Ŏ	Õ
610	11.41	1.38	29	0	0	0	0	0	0	0	0	1	0	9	0	16	2	0	1	0	0	0	0	0	0	0	0	0	0	0
620	12.19	1.57	27	0	0	0	0	0	0	0	0	0	1	3	1	16	1	2	2	1	0	0	0	Ő	0	0	0	0	0	0
640	12.41	1 84	17	ň	ő	ň	ő	ň	ň	ň	Ň	0	0	2	0	13	Ŭ	1	1	Ŭ	U A	0	0	0	0	0	0	0	0	0
650	11.90	2.13	20	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	1	ň	5	ŏ	10	1	- 1	- i	ň	ň	1	ů N	ň	ň	ň	Ň	Ň	U N	0
660	12.44	1.82	18	Õ	Õ	Ō	ŏ	Ō	ŏ	ŏ	ō	ō	ŏ	ź	Ť	10	ż	1	i	ŏ	ŏ	i	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň
670	13.00	1.69	15	0	0	0	0	0	0	0	0	0	0	1	0	7	2	2	1	Ż	Ō	Ó	Ō	Ō	Õ	Õ	Ō	ŏ	ŏ	ō
680	12.09	1.14	11	0	0	0	0	0	0	0	0	0	0	1	1	7	0	2	0	0	0	0	0	0	0	0	0	0	0	0
690	11.75	0.47	11	0	0	0	0	0	0	0	0	0	0	0	3	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
700	12.07	1.50	6	0	0	0	U N	Ŭ	Ű	U O	U	0	Ŭ		0	9	1	2	1	1	0	0	0	0	0	0	0	0	0	Ő
720	12.50	1.00	4	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ŏ	ŏ	ň		ň	ž		1	ň	ň	ň	0	0	Ň	0	ň	0	0	0	0
			-	•	•	-	•	•	·	Ť	Ŭ	v	Ŭ	v	Ŭ	5	v	•	v	v	v	0	Ŭ	Ŭ	v	Ŭ	U	v	v	U
* 730	13.14	1.60		0.0		0.0		0.0	(	0.0		0.0		0.0		2.0		0.5		0.0		0.0		0.0		0.0		0.0		0.0
			3.5		0.0		0.0		0.0		0.0		0.0		0.0		0.0		1.0		0.0		0.0		0.0		0.0		0.0	
740	14.00	1.73	3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2	0	0	0	0	0	0	0	٥	0	0	n
750	16.67	1.15	3	0	0	0	0	0	0	0	0	0	Ó	Ō	Ō	Ó	Ō	Ō	ō	Ž	ō	1	ō	ō	ŏ	ō	ō	ŏ	ŏ	ŏ
760	13.50	3.54	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	Ó
770	12.00	0.00	2	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
790	15.00	0.00	1	0	0	0	0	0	0	0	0	U 0	0	0	0	1	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	7.49	3.78		0.0	я	6.0	я	3.0	72	4.0	17	78.0	11	1 0	22	د ۱			-	70	-	۔ د م	•	- 	•	1 0	-	•	•	• •
	,	20	1260.5		37.0	2	5.0	7	3.0	5	2.0	2.02	28.0		22.0	1	9.0	1	3.0		0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0

# Table G-2.--Age-length keys for Pacific cod sampled during the 1990 eastern Bering Sea bottom trawl survey.

MALE KEY

.

	AVG	STD	FREQ-	AGE	(1N	YFAD	51																					-		
GTH	AGE	DEV.	UENCY	0	1	2	<b>3</b>	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	10	20	21	22	77	24	25 24	
							-	•	-	•	•	Ť			••			14		10		10	17	20	21	22	23	24	23 20	<b>JT</b>
			-			-	-				_			_																
120	1.00	0.00	2	0	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
140	1 00	0.00	2	ň	2	0	ň	ň	U N	0	Ů	ů	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
150	1.00	0.00	2	ŏ	2	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ů N	0	Ŭ	0	0	ŭ	Ů	Ů	0	U	U	0
160	1.00	0.00	Š	ŏ	5	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ů N	0
170	1.00	0.00	6	Ō	6	Õ	Ō	Ő	Õ	Ŏ	ŏ	ŏ	ō	ō	ŏ	ŏ	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
180	1.40	0.55	5	0	3	2	0	0	0	0	0	0	0	0	0	0	Ó	Ó	Ó	Ō	Õ	Ō	Ō	Ō	Ō	Õ	ŏ	ŏ	õ	ŏ
190	1.50	0.58	4	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0	Ó	Ō	Ó	Ó	Ō
200	1.43	0.53	7	0	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
210	1.60	0.55	2	U	2	5	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	Q	0	0	0	0	0
220	1 50	0.00	2	0	1	4	U N	0	U A	0	U N	0	U	U V	U U	0	0	0	0	0	0	0	0	0	Ô	Ő	Ô	Ő	0	0
240	2 00	0.71	4	ň		2	ň	ň	ñ	ň	ň	ň	ň	ň	ň	ň	0	0	0	0	U	Ň	U	0	Ŭ	Ŭ	Ű	Ű	U	U
250	2.00	0.00	2	ŏ	ŏ	ž	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ŏ	ň	ŏ	ň	ő	ň	ň	ň	ň	ň	ő	ň	0	ů N
260	2.00	0.00	3	Ō	Õ	3	Õ	õ	ò	õ	ō	ŏ	õ	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ň	ň	ň
270	2.00	0.00	4	0	0	4	0	0	0	0	0	0	Ó	Ō	Ó	Ō	Ō	Ő	Õ	Ō	Ō	Õ	Õ	õ	ō	ŏ	ŏ	ŏ	ŏ	ō
280	2.00	0.00	5	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	Ó	Ō	Ô.	Ō
290	2.20	0.45	5	0	0	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
300	2.67	0.50	9	0	0	3	6	0	0	Õ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
310	2.13	0.40	8	U	U	2	ê	U	0	U	0	0	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
330	2 56	0.00	0	ň	ň	6	5	0	ů	U O	ů N	U n	0	U A	0	Ŭ	0	Ŭ	Ŭ	U	0	0	0	0	0	0	0	0	0	0
340	2.86	0.38	7	ŏ	ŏ	1	6	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	0	0	ň	0	U 0	0	0	U n
350	2.75	0.46	8	ŏ	ŏ	ż	6	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
360	2.75	0.50	4	Ō	Ō	Ĩ	3	Ō	Ō	Ō	Õ	Õ	Õ	Ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	ŏ
370	2.67	0.52	6	0	0	2	4	0	0	0	0	0	0	0	Ó	Ó	Ō	Ō	Ō	Õ	Ō	Ŏ	Õ	ŏ	ŏ	ō	ŏ	ō	ō	ō
380	3.00	0.00	· 5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
390	3.00	0.00	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
400 .	3.60	0.55	5	0	0	0	Z	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
410	3.20	0.42	10	0	0	0	7	4	U	U N	0	0	U	Ŭ	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
420	3.30	0.55	5	ň	ň	ň	1	2	ň	ň	ň	0	ň	ň	Ň	0	Ň	0	0	U 0	U	0	Ŭ	0	Ň	U O	0	0	0	0
440	4.00	0.00	1	ŏ	ŏ	ŏ	ò	1	ŏ	ŏ	ŏ	ŏ	ñ	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	0	ň	Ň	0	0
450 /	4.00	0.00	6	ŏ	ō	ŏ	õ	6	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ň	ň	ň	ň	ň	ň	ň
460 (	4.00	0.00	3	0	0	0	0	3	Ó	Ō	Ó	Ó	Ō	Ō	Õ	Ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
470 /	4.00	0.00	7	0	0	0	0	7	0	0	0	0	0	0	0	0	Ó	Ō	Ō	Ō	Ō	Õ	Ō	Ŏ	Õ	ŏ	Ō	ō	Ō	Ō
480 4	4.00	0.00	3	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (	0
490 4	4.00	0.00	5	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -	0	0	0 (	0
500 4	4.33	0.58	5	U	U	Ű	U	Z	1	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (	0
520 4	4.00 5 00	0.00	<b>)</b>	Ň	0	0	0	2	0	0	0	Ň	0	U	Ů	U	U	U	U	U	U	U	0	0	0	0	Ö	0	0 (	0
530 /	6.67	0.00	7	ň	ň	ň	ň	6	4	ň	ñ	ň	ň	ň	ň	0	ů n	U C	U n	U A	U n	Ů	ů v	Ŭ	Ű	Ű	U	U		U A
540 /	6 63	0.52	8	ŏ	ŏ	ŏ	ŏ	3	ś	ŏ	ŏ	ŏ	ŏ	ň	ň	ñ	ň	ň	ň	ñ	ň	ň	ň	ň	ñ	ň	ñ	ň	0 1	ň
			-	-	-	-	-	-		-	Ĩ	Ĩ		-										•			9	v	<b>v</b> (	•
550 4	4.71	0.49	7	0	0	0	0	2	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
550 <i>4</i> 560 5	4.71	0.49	7 4	0 0	0 0	0 0	0 0	2 0	5	0 0	0	0	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	0 0	0 0	0 0	0 0

a .

160

.

. .

.

MALE KEY

LEN	AVG	STD.	FREQ-	AGE	CIN	YEAR	(S)	-																						
GTH	AGE	DEV.	UENCY	Ō	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26+
GTH 580 590 610 620 630 640 650 640 650 680 670 680 690 710 770 770 750 740 770 770 780	AGE 5.18 5.00 5.60 5.63 6.00 6.00 6.13 6.29 6.00 6.13 6.29 6.00 6.13 6.25 6.88 7.00 7.00 6.80 7.17 7.00 6.80 7.40	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.35 0.40 0.35 0.00 0.35 0.00 0.35 0.00 0.35 0.00 0.35 0.00 0.35 0.00 0.35 0.00 0.35 0.00 0.55 0.00 0.00	UENCY 11 8 9 7 8 6 11 8 6 11 8 7 8 4 4 9 7 8 6 11 8 6 11 8 7 7 8 6 11 8 7 7 8 6 6 11 8 7 7 8 6 6 11 8 7 7 8 6 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 8 8 8 8 7 7 8 8 8 8 8 7 7 8 8 8 8 8 8 7 7 8 8 8 8 7 8 8 8 7 8 8 8 8 7 8 8 8 8 8 7 8 8 8 7 8 8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8					4 0000000000000000000000000000000000000	5 983030000000000000000000000000000000000	6 20675611775771100001000	7 00000011201371674523		9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																	
780 790 800 810 830 840 850 860 870 880 870 880 890 930 940	7.20 8.00 8.33 8.00 8.00 8.00 8.00 9.20 8.00 8.00 10.00 9.00	0.35 0.45 0.82 0.58 0.00 0.00 0.00 2.68 0.00 0.00 2.83 0.00 0.00	55432122511211	0 0 0 0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000				000000000000000000000000000000000000000	341000000000000000000000000000000000000	21222122411100	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
* <b>9</b> 50	11.33	0.00	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5667	0.0	0.0	.3 0.0	333	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	D.O	0.0
<b>* 9</b> 60	12.67	0.00	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.3 0.0	5333	0.0	0.0	.6 0.0	667	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	D.O	0.0
970	14.00	0.00	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	4.56	2.27	402.0	0.0	5 53.0	0.0 6	5 6.0	3.0 4	7. 8.0	3.0 4	2 8.0	2.0	3.0	2.0	0.0	1.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	<b></b> 0	D.O

.

FEMALE KEY

LEN	AVG	STD.	FREQ-	AGE	CIN	YFAR	S)														-,-	_								-
GTH	AGE	DEV.	UENCY	Ō	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 26	+
																											_			_
						-		•	•		-	•	_		•	•	•		•	•	•	•			•	•	•	•	•	_
110	1.00	0.00	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
120	1.00	0.00	2	0	2	0	0	0	Ū.	Ň	0	0	ň	0	0	Ň	ň	0	ň	ň	Ň	ň	ň	ů	ň	ň	ň	ň	ů i	U U
140	1 00	0.00	7	ň	3	ň	ő	õ	ň	ň	ň	ň	ŏ	ŏ	ň	ň	ň	ň	ň	ŏ	ň	ň	ŏ	ŏ	ŏ	ň	ŏ	ň	ŏ	ň
150	1.00	0.00	ž	ŏ	3	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ŏ	ŏ	ō	ō	ŏ	ō	ŏ	ō	ō	ō	ō	ō	ŏ	Õ
160	1.00	0.00	3	ō	3	ŏ	ō	ō	Ō	Ō	õ	ŏ	Ō	Ō	Ō	Õ	Ŏ	ŏ	Ō	Ō	Õ	Ō	ŏ	Ŏ	Ō	Õ	Õ	Ō	Ŏ.	Ō
170	1.50	0.71	2	0	1	1	0	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180	1.00	0.00	3	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
190	1.00	0.00	4	0	4	0	0	0	0	0	0	0	Õ	0	Ő	0	Ő	0	0	0	0	0	Ő	Ő	Ő	Ő	0	0	0	0
200	1.25	0.50	4	0	5		U	0	0	U	0	Ű	U	U 0	0	U	0	0	Ű	U	0	U	0	0	0	0	0	U A	0	0
210	1.50	0.71	2	U			U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0	U	0	U
* 220	1.80	0.52		0.0		2.0		0.0	C	0.0	(	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	0.0	0
			2.5		0.5		0.0		0.0		0.0	(	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	I	0.0	
			_	_	•	-	•	•	•	~	-	•	~		•	•	•		•	~	•	~	•		~	•	•	~	•	~
230	2.00	0.00	5	0	0	5	Ū O	0	0	0	Ű	U	0	U	U O	U	U	U	U O	U O	U A	U 0	0	0	U A	0	0	U 0	0	0
240	2.00	0.00	4	0	ň	2	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ő	ň	ŏ	ň	ň	ŏ	ŏ	ň
260	2.00	0.00	5	ň	ŏ	5	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
270	2.00	0.00	8	ō	ŏ	8	ŏ	ō	ŏ	ŏ	ō	ō	Õ	ŏ	Ō	ō	ŏ	ŏ	Ō	Õ	Õ	Õ	Ō	Ŏ	Ō	Ō	Õ	Ō	Ô (	Ō
280	2.40	0.55	5	Ō	Ō	3	2	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
290	2.00	0.00	5	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
300	2.50	0.58	4	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
310	3.00	0.00	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0	U	Ű	U	U	U	0	0
320	2.80	0.40	27	0	0	2	4 5	ň	0	U N	Ň	Ň	ň	Ň	Ň	Ň	Ň	ŏ	ň	ň	0	ŏ	ň	ň	ŏ	ň	ň	ň	ň	ñ
340	2.67	0.47		ň	ŏ	5	í.	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ō	ō	Õ
350	2.86	0.38	ž	ŏ	ō	ĩ	6	ŏ	ō	Õ	ō	ō	ŏ	Ō	ō	ŏ	ŏ	õ	ō	Ō	ō	ō	Õ	Ō	Ő	Õ	Ŏ	Ō	Ō	Ō
360	3.00	0.00	8	Ó	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (	0
370	3.17	0.41	6	0	0	0	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0
380	3.00	0.00	3	0	0	0	3	Ô	0	0	0	Ö	0	Ô	0	0	0	0	0	0	Ő	0	0	0	0	0	0	0	0	0
390	3.00	0.00	6	0	0	0	,	7	U	0	Ŭ	Ű	0	0	0	0	0	U	0	Ű	U 0	0	0	0	0	Ŭ	0	0	0	U U
400	3.43	0.73	<b>7</b>	0	0	0	- <del>4</del>	2	n N	ň	ň	ñ	0	n n	ň	ň	n	0 0	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ŏ	ŏ
420	3.60	0.55	5	õ	ŏ	ŏ	2	3	ŏ	ŏ	ŏ	ŏ	Ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ō	ō	ō	Ō
430	4.00	0.00	Ĩ.	ŏ	õ	ŏ	ō	ž	ŏ	Õ	ō	Ō	Ō	Ő	Ő	ŏ	ŏ	Ō	Ō	Ō	Ŏ	Ō	ŏ	Ō	Ō	Ō	Ó	Ō	Ō	0
440	3.80	0.45	5	Ō	Ó	0	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
450	4.00	0.00	5	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
460	4.00	0.00	5	0	0	0	Õ	5	0	0	0	0	Ő	Ő	Ő	Õ	Ő	0	Õ	Õ	Ô	Õ	Õ	Ő	Õ	0	Ő	Ő	0 (	0
470	4.00	0.00	Ž	Ő	0	0 C	0	2	0	0	0	U	U C	Ű	Ů	Ŭ	U	U	U	Ű	U	U	Ű	ÿ	0	U	0	Ŭ	0	U O
480	4.00	0.00	0	0	0	U n	U n	2	U n	0	0	ň	0	0	0	0	0	0	ň	ů N	ů N	ů N	ň	ů n	ň	ň	ň	0	Ő Å	ñ
490	4.00	0.00	2	0	0	0	0	2	1	ñ	ň	Ő	Ő	ů N	ň	ň	0	ň	ŏ	ŏ	ŏ	Ő	õ	Ő	ŏ	ŏ	ŏ	ŏ	ŏ	õ
510	4.33	0.58	रं	ñ	ő	õ	ő	ž	1	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ŏ	ō	õ	õ	õ	ō	Ō
520	4.25	0.50	4	ŏ	õ	ō	Ő	3	1	Õ	ō	Ō	Ó	Ó	Ő	ŏ	Ŏ	Ŏ	Ō	Ō	Ō	Ō	Ő	Ō	Ó	Ō	0	0	0	0
530	5.00	0.00	3	Ŏ	Ő	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (	0
540	4.83	0.41	6	0	0	0	0	1	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (	٥

FEMALE KEY

LEN	ÁVG	STD.	FREQ-	AGE	(IN	YEAR	S)																				_			
GTH	AGE	DEV.	UENCY	0	1	2	3	4	5	6	7	8	3 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 2	26+
							-																		_					
	F 00		•		-	_							_				_		_	_		_	-					_		
550	5.00	0.00	4	0	0	0	0	0	4	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
500	5.00	0.00		0	Ű	Ŭ	Ŭ	U	2	U	U	U C		0	U	0	U	U	U	0	0	0	0	0	0	0	0	0	0	0
580	5 00	0.00	Å	Ň	ň	Ň	Ň	0		0	0				U N	v v	0	0	0	Ň	0	U	Ŭ	0	U	0	Ň	Ŭ	0	U
590	5 00	0.00	7	ň	ň	ň	ň	ň	7	ň	ň	Č		0	ň	Ň	ň	0		ň	ň	0	ň	Ň	0	0	Ň	Ň	Ň	0
600	5.75	0.46	. 8	ŏ	ŏ	ŏ	ŏ	ŏ	2	Ă	ŏ	č	iă	ň	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
610	5.86	0.38	7	ō	ŏ	ō	ŏ	ŏ	ĩ	ŏ	ŏ	ŏ	Ō	Ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ň
620	5.83	0.41	6	Õ	Ō	ŏ	ŏ	ŏ	i	5	ō	Ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
630	5.70	0.48	10	0	0	0	0	Ó	3	7	Ō	Č	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Õ	Õ	Õ	ō	ŏ	õ	ŏ	ŏ	ō	ŏ
640	6.14	0.38	7	0	0	0	0	0	0	6	1	0	) (	0	0	0	0	0	0	0	0	0	Ō	Ó	Ó	Ō	Ó	Ō	Ō	Ō
650	5.75	0.46	8	0	0	0	0	0	2	6	0	0	) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
660	6.20	0.45	5	0	0	0	0	0	0	4	1	0	) (	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
670	5.86	0.38	7	0	0	0	0	0	1	6	0	0	) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
080	6.00	0.00	2	0	0	0	0	0	0	5	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	6.00	0.00	y o	Ŭ,	Ň	0	U N	U N	0	ÿ	ÿ	0		0	0	U	0	U	U	Ŭ	0	U	Ű	0	0	0	0	0	0	0
710	6.50	0.55	0 7	0	Ň	۰ ۵	ň	Ň	0	4	4 2	0			0	0	0	0	0	0	0	0	Ŭ	0	0	0	ů,	ů N	Ŭ	Ŭ
720	7.00	0.00	7	ň	ň	ň	ň	ň	ň		7	ň	i i	0	0	ň	ň	ň	ň	ň	ň	Ň	ň	Ň	Ň	ň	ŏ	ň	Ň	0
730	6.88	0.35	Ŕ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ĭ	7	ŏ	Ö	ŏ	ň	ŏ	ň	ň	ดั	ň	ň	ň	ň	ŏ	ň	ň	ŏ	ň	ň	ň
740	7.13	0.35	8	ō	ō	Ō	ŏ	ō	ō	ō	7	ī	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
750	7.13	0.35	8	Ó	Ö	0	0	0	0	Ō	7	1	Ō	Ō	Ō	Ō	Õ	Õ	Ō	Ō	Ō	Ō	ō	ō	ō	ō	ŏ	ŏ	ō	õ
760	7.00	0.00	4	0	0	0	0	0	0	0	- 4	0	0	0	0	Ó	Ó	Ó	Ō	Ō	Ō	Ō	Ō	0	Ō	Ō	Ō	Ō	Ō	Ő
770	7.11	0.33	9	0	0	0	0	0	0	0	8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
780	7.20	0.45	5	0	0	0	0	0	0	0	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
790	7.50	0.58	4	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
800	0.14	0.90		U	U	U	U	Ŭ	0	U	1	2	0	1	Ŭ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
820	1.00	0.58	/ z	Ň	Ň	0	0	0	0	Ŭ	1	2	0 1	Š	Ň	U N	U U	U	0	U	U	U	U	Ŭ	U	U	U	Ŭ	0	0
830	8 00	0.00	1	ň	ň	ň	ň	ň	0	ň	ň	1		. ŭ	ň	Ň	ő	Ň	0	Ň	0	0	0	Ň	0	0	0	Ŭ	0	0
840	8.00	0.00	3	ŏ	ň	ŏ	ŏ	ň	ň	ŏ	ŏ	, i	: Ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	0	ň	ň	ň
850	8.00	0.00	Š	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	5	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
860	8.00	0.00	1	Ō	Ō	Ō	Ō	ō	õ	ŏ	ō	Ĩ	ŏ	ŏ	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
870	8.00	0.00	3	0	0	0	0	0	0	0	0	3	Ō	Ō	Ō	Ő	Ō	Ŏ	Ō	Ō	Ō	Ō	Ō	ŏ	ŏ	ō	ŏ	ō	ŏ	ō
+ 000				~ ~		~ ~		~ ~		~ ~		~ ~																		
- 880	8.00	0.00	2 0	0.0	0 0	0.0	0 0	0.0	n n	0.0		2.0	<u>ה</u> ה	0.0		0.0	• •	0.0	• •	0.0		0.0		0.0		0.0	~ ~	0.0	• • (	).0
			2.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
890	8.00	0.00	1	0	0	0	0	0	0	0	0	1	0	n	0	0	0	O	n	n	Ô	D	0	0	n	Ω	0	0	n	0
900	9.57	1.99	7	Ō	Ő	Ō	Õ	ŏ	ō	ŏ	ō	i	Š	ŏ	ŏ	ŏ	ŏ	ĭ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
															1	-	5	•			-	5	-	2	-	-	-	-	-	-
* 910	9.50	2.00		0.0		0.0		0.0		0.0		0.5		0.0		0.0		0.5		0.0		0.0		0.0		0.0		0.0	C	).0
			4.0		0.0		0.0		0.0		0.0		3.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	1	0.0	

.

FEMALE KEY

.

:

LEN GTH	AVG AGE	STD. DEV.	FREQ- UENCY	AGE O	(IN 1	YEAF 2	2S) 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26+
920	9.00	0.00	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
* 930	9.00	0.00	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
940 1030	9.00 13.00	0.00 0.00	1 1	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0 1	0 0												
TOTAL	4.89	2.30	402.5	0.0	27.5	43.0	59.0	<b>8.0</b>	51.0	66.0	56.0	36.5	12.0	1.0	0.0	0.0	1.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

.

SEXES COMBINED

-

(

LEN	AVG	STD.	FREQ-	AGE	CIN	YEAR	s) 7			4	7			10		12	47	1/	45		47	40	10							<u> </u>
uin 	AGE	DEV.	UENCI	U	1		2	4	2	0		0	У	10		12	13	14	15	10	17	18	19	20	21	22	25	24	25 7	26+
110	1.00	0.00	1	0	1	0	0	0	0	0	0	0	0	0	0	0	n	n	0	n		0	n	n	0	0	0		0	_
120	1.00	0.00	4	Õ	4	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ō	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ň
130	1.00	0.00	5	Ó	5	Ó	Ō	Ō	Ō	Ō	Õ	Ŏ	Ō	Õ	Ō	Ō	Ō	ŏ	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ō	ŏ	ŏ
140	1.00	0.00	7	0	7	0	0	0	0	Ó	Ō	Ō	Ō	Ō	Õ	Õ	Ō	Ō	Ŏ	Ō	Õ	Õ	Ō	Õ	Ŏ	ŏ	ŏ	ō	ō	ŏ
150	1.00	0.00	5	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	Ō	Ō	Ō	Ō
160	1.00	0.00	8	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	Ó	Ō	Ō
170	1.13	0.35	8	0	7	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180	1.25	0.46	8	0	6	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
190	1.25	0.46	8	0	6	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	1.36	0.50	11	0	7	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
210	1.57	0.53	7	0	3	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
220	Z.00	0.00	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
230	1.80	0.45	5	0	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240	2.00	0.00	8	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
250	2.00	0.00	4	Ŭ	v	4	0	0	U	U O	0	0	0	0	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	2.00	0.00		Ŭ	v	40	Ŭ	U	U	U	v v	Ŭ	U	U	U	U	0	U	U	0	U	U	U	U	U	U	U	0	U	0
270	2.00	0.00	12	Ŭ	Ň	12		Ň	Ň	Ň	Ö	0	Ŭ	0	0	0	U	0	U V	Ŭ	U N	U	v v	U	Ŭ	0	Ű	U	U	U
200	2.20	0.42	10	ŏ	Ň	0	4	0	ň	Ň	Ň	0	0	. U	Ň	Ň	Ň	0	0	0	U N	0	0	Ŭ	U A	U A	v	Ŭ	Ű	Ŭ
300	2 62	0.52	13	ň	ň	5	8	ň	ň	ň	ň	ň	ň	ň	ň	ň	Ň	ň	ň	ň	Ň	ň	Ň	ů N	ň	0	0	Ň	0	0
310	2 83	0.30	12	ň	ň	5	10	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	Ň	ň	ň
320	2.90	0.32	10	ŏ	ŏ	1	ÿ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ň	ŏ	ň	ň	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň
330	2.63	0.50	16	ŏ	ŏ	6	10	ŏ	ŏ	ŏ	ň	ň	ň	ŏ	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
340	2.77	0.44	13	ō	ŏ	3	10	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ŏ	ň	ŏ	ñ	ň
350	2.80	0.41	15	Ó	Ō	3	12	Ō	Õ	Ō	Ō	Õ	ŏ	ŏ	ō	Ō	ō	Ō	ŏ	ō	õ	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ
360	2.92	0.29	12	Ó	Ō	1	11	Ō	Ō	Ō	ŏ	Õ	Ō	Õ	ō	ō	ō	ŏ	ŏ	ō	ō	ō	ŏ	ō	ō	ŏ	ŏ	ō	ŏ	ŏ
370	2.92	0.51	12	0	0	2	9	1	0	0	0	0	0	0	Ó	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Õ	Ŏ	Ō	Õ	ŏ	ŏ	õ
380	3.00	0.00	8	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	Ó	Ō	Ō	Ō	Ō	Õ
390	3.00	0.00	11	0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Q	0	0	0	0	0	0
400	3.50	0.52	12	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Û	0	0
410	3.35	0.49	17	0	0	0	11	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
420	3.55	0.52	11	0	0	0	5	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
430	3.89	0.33	9	0	0	0	1	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
440	5.85	0.41	6	0	Ŭ	Ŭ	1	5	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
450	4.00	0.00	11	Ŭ	U	Ű	Ű	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
400	4.00	0.00	ð	Ű	0	0	Ŭ	Ö	U	Ű	0	Ŭ	0	Û	Ű	Û	Ű	Û	Õ	0	Õ	0	Ō	Ō	0	0	0	Ō	0	0
470	4.00	0.00	, y	0	0	0	0	9 0	0	0	0	Ň	U A	0	0	v v	U	U V	U	Ŭ	Ű	U	0	0	Ū	0	0	0	0	U
400	4.00	0.00	7	0	0	0	0	7	0	0	0	0	0	0	0	0	Ű	U v	Ű	Ŭ	U	U	U	U	U	Ű	U	U	U	U
500	4.00	0.00	<b>'</b> 7	ň	ñ	ň	0	É	2	n N	n n	ň	n n	Ň	0	Ň	0	0	0	0	0	U A	0	0	Ŭ	0	0	U A	0	0
510	4.17	0.47	, A	ň	ň	ň	ň	7	د 1	ň	ň	ñ	ň	ň	0	ň	0	0	0	ů v	0	0	0	U A	Ŭ	0	0	0	0	0
520	4.63	0.52	8	õ	ŏ	ŏ	ŏ	ż	5	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ñ	ň	0	0	ů N	0	0	0	0	ň	ñ
530	4.60	0.52	10	ň	ň	ň	ň	ĩ	6	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	0	0	ň	ň	0	ň	ň	ň
540	4.71	0.47	14	ŏ	ŏ	ŏ	ŏ	4	10	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ň	ň	ň	ő	ñ	ň	ñ	ň	ň	ň	ň	ň	ň
550	4.82	0.40	11	Ō	Ō	Ō	Ō	2	9	ō	Ō	Ō	õ	ŏ	õ	ň	õ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň

SEXES COMBINED

LEN GTH	AVG AGE	STD. DEV.	FREQ- UENCY	AGE O	(IN 1	YEAR 2	s) 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	 26+
560	5.00	0.00	9	0	0	0	0,	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	 0
570	5.00	0.00	11	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
580	5.12	0.33	17	0	0	0	0	0	15	2	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
590	5.00	0.00	15	0	0	0	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
600	5.71	0.47	17	0	0	0	0	0	5	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
610	5.93	0.27	14	0	0	0	0	0	1	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
620	5.71	0.47	14	0	0	0	Ő	0	4	10	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	Q	0	0	0	0	0
630	5.81	0.40	16	0	0	Ū,	0	0	3	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
640	5.06	0.24	18	U	0	0	0	0	0	- 17	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
650	5.94	0.44	16	U	0	U	0	0	2	15	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
000	0.15	0.38	13	U	Ű	0	0	0	0	11	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
670	0.07	0.47	14	U	U	0	U	0	1	11	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
080	<b>D.UU</b>	0.00	12	U	U	U	U	0	Ŭ	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09U 700	0.00	0.24	17	U	Ű	U	U	U	0	16	1	0	U U	0	0	0	0	0	0	0	0	0	Q	0	0	0	0	0	0	0
700	4 97	0.51	12	U U	U	v v	Ŭ	Ŭ	, U	2		0	U U	U U	Ű	U	U	Ű	U	0	Ū,	0	0	0	0	0	0	0	Q	0
710	7 00	0.40		0	0	U O	Ŭ	0	0	2	y y	U V	U U	U	U	U	U	0	U	0	0	0	0	0	0	0	0	0	0	0
720	1.00	0.00		0	U	Ű	Ŭ	Ŭ	U		8	0	U	0	U	U	0	0	0	0	0	0	0	0	0	0	0	0	O	0
730	0.93	0.27	14	0	0	Ŭ	Ű	U	0	1	15	0	0	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
740	7.07	0.20	17	U N	0	0	Ŭ	U	U	U I	14	1	Ŭ	U	0	Ű	U	0	0	0	0	Ö	0	0	0	0	0	0	0	0
730	7.00	0.41	10	Ň	v v	, v	0	Ŭ	U N			- !	U	0	U V	U	U	U	U	U	0	0	0	0	0	U	U	U	Ū	0
770	7.10	0.32	10	Ŭ	U V	U A	U V	U	U	U		1	U	U	0	0	U	0	0	0	0	0	0	0	0	0	0	0	0	0
700	7.09	0.30	10	Ň	ů,	Ň	0	Ŭ	U	U	10	ļ	0	U V	U	Ŭ	U O	U	U	U	0	Ŭ	0	0	0	0	0	0	0	0
700	7 77	0.40	10	Ň	Ň	Ŭ	0	0		Ŭ		2	U N	U	U	Ŭ	Ŭ	U	0	U	0	0	Ŭ	0	0	0	0	0	0	0
000	1.33	0.30	44	0	0	ů,	U 0	Ň	U	U	0	2	U A	U	U	U	U	U	U	0	0	U	U	0	0	0	0	0	0	0
000	B.09	0.63	10	0	Ň	U 0	0	Ŭ	0	U N	2			1	U V	Ŭ,	0	0	U	0	0	0	0	0	0	0	0	0	0	0
820	B 20	0.47	10	0		0	0	Ň	U N	ů,		,		U v	U	Ů	Ű	Ŭ	Ŭ	U	Ű	U	U	U	U	U	U	U	Ű	U
810	B 00	0.40	2	ŏ	Ň	Ň	Ň	Ň	Ň	Ň	2	4		0	U N	Ň	0	Ŭ	Ň	v v	v v	0	0	Ŭ	Ŭ	U	U	U	Ŭ	0
840	8 00	0.00	5	ň	Ň	ň	ŏ	ň	ň	ň	0	2	ň	Ň	0	Ň	ů,	Ň		0	0	0	Ŭ	Ň	Ŭ	Ű	0	U	Ű	0
850	8 00	0.00	7	ň	ň	ň	ň	ň	ň	ň	ň	7	ň	Ň		Ň	Ň	Ň	0		Ň	Ň	Ň	0	0	Ű	U	0	ů.	U v
860	0.00	2 45	Å	ň	ň	ň	ň	ň	ň	ň	ň	ć	ň	ň	Ň	0	0	4	0	Ň	0	Š.	Ň	0	0		Ŭ	0	Ů	0
870	8 00	0.00	4	ň	ň	ň	ň	ň	ň	ň	ň	2	ň	0 0		Ň	ů N		U N	Ň	U N	0	0	0	0	ů.	0	0	Ů	0
880	8 00	0.00	1	ŏ	ň	ň	ň	ň	ň	ň	ň	- 1	ň	Ň		Ň	0	Ň	· 0	0	0	0	U N	U N	Ŭ	Ň	0	0	0	0
800	0.00	2 31		ň	ň	ő	ň	ň	ň	ň	ň	<b>'</b>	ň	ň	Ň	1	0	Ň	0	0	U N	Ň	ů.	0	0	0	0	0	0	0
000	0 57	1 00	7	ň	ň	ň	ň	ň	ň	ň	ň		š	ň	ň	Å	Ň		0	Ň		0	0	Ň	0	Ň	0	0	Ň	Š
,00	/	,	'	v	v	v	Ŭ	v		0	0	•		U	v	v	U	'	U	U	U	U	U	U	0	Ų	U	U	U	v
910	9.50	2.00		0.0		0.0		0.0		0.0		0.5		0.0		0.0		0.5		0.0		0.0		0.0	1	0.0	0	.0		).O
			4.0		0.0	1	0.0		0.0		0.0		3.0		0.0		0.0		0.0		0.0		0.0		0.0	0	0.0	0	0.0	
920	9.00	0.00	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
930	9.00	0.00	1	Ő	Ó	Ó	Ō	Ō	Ō	Ō	Ő	Ō	1	Ő	ō	ō	ō	ō	ō	ō	ō	ō	ō	ŏ	ō	õ	õ	ō	Ō	ŏ
940	9.50	0.71	2	Ő	Ó	0	0	Ō	Ō	Ő	Ó	Ó	1	1	Ő	Õ	ŏ	ŏ	Õ	ŏ	õ	ō	õ	ō	ō	ō	ō	ō	Ō	ŏ
950	10.40	2.03		0 0		0 0		0 0		0 0		0 0	Å	667		0 0	7			0 0		<b>^ ^</b>		n n		<b>`</b> ^	^	0	,	1 0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10140			0.0		v.v	'			0.0		5.5				0.0				0.0		0.0		0.0			U	.v		·. u

. .

SEXES COMBINED

.

•

LÈN GTH	AVG AGE	STD. FREQ- DEV. UENCY	AGE (IN 0 1	I YEARS	) 34	56	7	8	9 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	 26+
* 960	11.75	4.56 1.3333	0.0	0.0 ) 0	0.0 .0	0.0 0.0	0.0	0.0	.3333 13	0.0	0.0	 0.0	5667	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
970 1030	14.00 13.00	0.00 1 0.00 1	0 ( 0 (	) 0 ) 0	0 0 0 0	0 0 0 0	0 0	0 0	0 0	0 0	0 0	0 1	1 0	0 0											
TOTAL	4.73	2.29 800.0	0.0 60.0	91.0 ) 125	101.0 .0	139.0 99.0 1	5 04.0	6.5 15.	<b>3.</b> 0	0.0	1.0	1.0	4.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

# Table G-3.--Age-length keys for yellowfin sole sampled during the 1990 eastern Bering Sea bottom trawl survey.

MALE KEY

.

. . .

LEN GTH	AVG AGE	STD. DEV.	FREQ- UENCY	AGE O	(IN 1	YEA	RS) 3	4	5	6	. 7	7	8	9	10	11	12	13	14	15	i 16	17	18	19	20	21	22	23	24	25	26+
																				_											
110	3.50	0 71	2	n	n	0	1	1	n	0		ı	0	n	n	٥	0	. n	0	ſ		. n	0	0	n	n	n	n	n	0	•
120	4.00	0.71	5	ō	ŏ	ŏ	i	ż	1	ŏ	Ò	Ś	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ċ	Ö	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
130	4.71	0.49	7	Ō	Ō	Ó	Ó	2	5	Ő	Ò	j	Ō	Ō	Ō	Ō	Ō	Ō	Ō	i č	Ō	Ō	ō	ō	ō	ō	ō	ŏ	ŏ	ŏ	ŏ
140	5.36	1.12	11	0	0	0	0	3	3	3		2	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ċ	Ō	Ō	Ō	Ō	Ō	Ō	Õ	Ŏ	Õ	Õ	Õ
150	6.40	0.70	10	0	0	0	0	0	0	7	' 2	2	1	0.	0	0	0	0	0	0	) (	0	0	0	0	0	0	Ó	Ó	Ō	Ō
160	5.83	0.58	12	0	0	0	0	0	3	8	3 1		0	0	0	0	0	0	0	0	) (	0	0	0	0	0	0	Ó	Ó	Ō	Ó
170	6.58	0.90	12	0	0	0	0	0	2	2	2 7	7	1	0	0	0	0	0	0	0	) (	0	0	0	0	0	0	0	0	0	0
180	7.00	1.14	18	0	0	0	0	0	0	5	11	1	1	0	0	1	0	0	0	· (	) 0	0	0	0	0	0	0	0	0	0	0
190	7.84	1.30	19	0	0	0	0	0	0	2	: 8	3	3	3	3	0	0	0	0	- C	) (	0	0	0	0	0	0	0	0	0	0
200	7.06	1.03	17	0	0	0	0	0	1	- 3	5 5	>	2	2	0	0	0	0	0	, C	) ()	0	0	0	0	0	0	0	0	0	0
210	7.68	1.20	19	0	0	0	0	0	Û	2	: 10	)	0	6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
220	8.05	1.32	21	0	0	0	0	0	1	0	3 (	3	2	9	0	1	0	0	0	<u> </u>	) (	0	0	0	0	0	0	0	0	0	0
230	8.11	1.20	19	0	0	0	0	0	0	2	: 5	5	2	9	1	0	0	0	0	· C	0	0	0	0	0	0	• 0	0	0	0	0
240	8.25	1.21	20	0	0	0	0	0	0	1	7	<u> </u>	0	10	2	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0
250	8.70	0.86	20 ZO	0	0	0	0	0	0	0		5	2	13	2	0	0	0	0	Ç	0	0	0	0	0	0	0	0	0	0	0
260	9.35	1.81	20	0	0	0	0	0	0	0	2		1	12	3	Ţ	0	0	0	9	1	0	0	0	0	0	0	0	0	0	0
270	9.58	1.8/	19	U	0	0	U	U	0	0	č		Ū.	10	4	2	0	0	0	G	1	0	0	0	0	0	0	0	0	0	0
280	9.32	1.00	19	U	U	U	U	U	U	U			2	8	6	Ę.	U	0	0	0	0	U	0	0	0	0	0	0	0	0	0
290	12.22	3.80	18	U	U, U	0	U	0	U	U		2	U Q	{	1	4	0	Ŭ	1	Q	1	2	0	1	1	0	0	0	0	0	0
300	12.07	2.89	14	0	.0	U	U	0	0	U		!	U O	4	1	1	2	2	2	1	0	0	U U	1	0	0	0	0	0	0	0
310	17.64	4.80	17	Ŭ	U N	Ň	0	Ň	Ŭ	U		<u> </u>	U A	ů,	1	4	Ŭ	<u> </u>	0	0		U U	د	0	1		Ű	1	0	0	U
320	14 77	4.90		0	U O	0	0	U O	Ŭ,	U			U A	Ŭ	ů.	~	0	د	1		U U	· .	4	2	U U	1	Ŭ	1	0	1	1
320	10.73	5.47			0	Ň	0	0	Ň	0		2	1	0	1			1						1	1	2	U V	2	Ŭ	0	U 0
340	17 77	1 57	7	0	ں م	0	0	0	0	0				0		0	0			0					U 0	U O	U 0	2	Ň	0	0
0.47	16 50	10 61	2	Ň	ň	ň	ň	ň	ň	ň	ň		Ň	1	ň	Ň	Ň	ň	0	0			0		Ň	Ň	Ň	ŭ	1	0	Ň
370	20 00	0.01	1	ň	ň	ň	ň	ň	ň	ň	ň		ň		ň	ň	ň	ň	0			0	ں م		1	ň	ň	Ň		0	ň
5/0	20.00	0.00	•	v	v	0	v	v		0			•	U	U	U	0	U	0	U		U	v	U	'	U	0		U	v	U
* 380	15.00	0.00	I	0.0		0.0		0.0		0.0		٥.	0		0.5		0.0		0 0		0.0		0 0		05		0 0		0 0		0 0
500	12100		1.0		0.0	•••	0.0	•.•	0.0	•••	0.0	) Ŭ.	ČΟ	.0`		0.0	•.•	0.0	0.0	0.0		0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0
					••••				••••		•••		•			•••		•••		•••		•••		•.•		•.•		•.•		•.•	
390	10.00	0.00	1	0	0	0	0	0	0	0	0	)	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0 / 8	6 17		0 0		<b>n</b> n		оn	1	5 n		18	n	2	75		* 0		<u>د م</u>		٨ ٥		70		. 5		<u> </u>		1 0		1 0
IUIAL	7.40		358.0	0.0	0.0	5.0	z.0	1.0	6.0	0.0	78.0	10.	<b>9</b> 4	.0	1	9.0	5.0	6.0	0.0	2.0	0.0	8.0	1.0	6.0	4.3	4.0	0.0	4.0	1.0	1.0	1.0

÷

FEMALE KEY

LEN	AVG	STD.	FREQ-	ÅGE	CIN	YEAF	(2)						-				_													
GTH	AGE	DEV.	VENCY	0	ં 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26+
·											_									•								_		
110	/ E0	0.71		•	•	•	•			•	~	~	_		•	•	•	•			-	-	_	_	_	_			_	
120	4.50	0.71		0	0	0	Ŭ	ंद	1.	0	Ň	Ű	0	0	0	U	0	0	Ö	0	0	0	0	0	0	0	Ö	0	Ő	Ő
130	4.50	0.58	4	ŏ	ŏ	ň	ň	2	2	ň	ň	ň	ň	ñ	ñ	ň	ň	ň	ň	ň	0	ň	Ň	Ň	Ň	0	0	Ŭ	v	Ů
140	5.50	0.84	6	ō	ŏ	ŏ	ŏ	õ	4	ĭ	ĭ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
150	5.60	0.97	' 10	0	Ó	Ó	Ō	2	1	6	1	Õ	Ō	Õ	Ō	ō	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
160	5.88	0.83	8	0	0	0	0	1	0	6	1	0	0	Ó	Ó	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Õ	ŏ	õ	ō	ō	ō	ō
170	6.64	0.50	14	0	0	0	0	0	0	5	9	0	0	0	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180	7.00	0.50	9	0	Ő	0	0	0	0	1	7	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	7.13		17	0	0	Ŭ	U	0	1	2		1	;	1	0	0	0	0	0	0	0	0	0	0	Ő	0	0	0	0	0
210	7.36	1 28	14	ů N	ň	ň	0	ň	1	2	~	1	4	ů N	0	0	0	0	0	0	0	U O	0	0	0	Ű	U	0	U	0
220	7.89	1.08	18	ŏ	ŏ	ŏ	ŏ	ŏ	ò	ō	10	i	~	1	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	Ň	Ň	Ň	0	0
230	8.42	1.71	19	Ō	Ō	Ō	Ō	Õ	Õ	ŏ	7	4	Š	ż	ŏ	ŏ	ŏ	Ĭ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
240	8.52	1.47	' 21	0	0	0	0	0	0	2	5	0	10	2	2	0	0	Ó	Ō	Ó	Ō	Ó	Ō	Ō	Ō	Õ	Ō,	ŏ	ō	ŏ
250	8.22	1.22	18	0	0	0	0	0	0	1	6	1	8	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	8.90	0.75	20	0	U	0	0	0	0	0	2	1	14	3	Ő	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
270	9.72	2 00	10	Ň	0	Ň	Ň	0	0	0	2	1	9 6	2	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
290	9.60	1 19	20	ň	ň	ň	ň	ň	ň	1	ñ	6	0	2	5		Ň	0	0	ů.	0	0	U A	1	U N	U N	U	Ŭ	0	Ű
300	9.41	1.00	17	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ò	ĭ	ŏ	10	3	3	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	ñ	ŏ	ő	ň	ň	ñ
310	12.85	3.69	20	0	0	0	0	0	0	0	0	Ō	2	4	6	Ō	Ĩ	1	1	ž	ĩ	ō	ō	ŏ	2	ŏ	ŏ	ŏ	ŏ	ŏ
320	12.95	3.34	19	0	0	0	0	0	0	0	0	0	2	1	8	0	1	1	1	2	1	1	0	0	1	0	0	0	Ó	Ō
330	15.80	4.07	20	0	0	0	0	0	0	0	0	0	0	1	4	1	1	1	1	1	4	1	0	2	1	1	1	0	0	0
340	16 91	3.00	17	0	Ű	U	0	0	0	0	0	0	1	1	0	3	0	0	1	6	1	0	.5	1	0	0	1	0	0	0
360	18.05	3.87	19	0	ŏ	ň	ň	ň	ñ	ő	ň	Ň	ň	Ň		1	2	2	1	2	2	1	2	2	1	1	2	0	U	0
370	18.05	3.93	20	ŏ	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ĭ	2	i	1	i	1	ñ	2	'n	4	4	1	2		ň	<b>.</b>
380	21.21	3.93	14	Ó	0	0	Ō	Ō	Ŏ	Ō	Ō	ō	Õ	ō	Ó	ō	ō	ö	ö	ż	ž	ō	ĭ	1	ž	ò	2	ŏ	ž	ž
390	20.43	2.30	7	0	0	0	0	0	0	0	0	0	0	Û	0	0	0	0	0	0	1	0	2	1	Õ	1	2	Õ	ō	Ō
400	21.00	2.10	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	2	1	0	0	0
410	22.00	2.57	6	0	U	0	0	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	2	0	1	0
* 420	22.00	2.37		0 0		n n		0 N	0	0	,	n n		0 0		0 0		<b>^ ^</b>		• •		447				1 0		~ ~		~ ~
420	22.00	2.31	4.3333	0.0	0.0	0.0	0.0	Ŭ.Ŭ (	D.O Ŭ	 C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	.o. n n	001	ົດ່	ں.ں م	667	1.0	222	0.0	447	0.0
										-	• •				•••		••••		•••		•••		0.0	.0	007	•••		.0		
* 430	22.00	2.37		0.0		0.0		0.0	0	.0		0.0		0.0	1	0.0		0.0		0.0	.33	333	· (	0.0		1.0		0.0	1	0.0
			2.6667		0.0		0.0	(	0.0	0	0.0		0.0		0.0		0.0		0.0	I	0.0	1	0.0	.3	333	.6	667	.33	533	
//0	22 00	0 00	1	•	•	•	•	•	~	•	~	•	~	•	•		-		•	•	-	-			-			-	-	
440	22.00	0.00	I	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ų	0	0	0	0	0	1	0	0	0	0
TOTAL	11.64	5.45		0.0		0.0		9.0	27	.0	13	3.0	٦	1.0		9_0	1	1.0	2	0.0	-	7 0	1.	۵ ۵	1	n n		1 0		3 0
			442.0		0.0		0.0	1	1.0	73	.0	9	3.0	3	7.0	•	7.0		7.0	1	3.0		8.0	1	9.0'	<b></b> 1	5.0		. O	0.0
																													-	

SEXES COMBINED

LEN	AVG	STD.	FREQ-	AGÉ	(IN	YEA	25)		-			_																		—
GTH	AGE	DEV.	UENCY	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 2	6+
																				-										
110	4.00	0.82	4	0	0	0	1	2	1	0	0	0	0	0	0	0	0	0	0	n	n	0	0	٥	n	n	n	٥	Λ	Δ
120	4.11	0.60	9	ŏ	ŏ	ō	i	6	ż	ŏ	ō	ŏ	ō	ŏ	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
130	4.64	0.50	11	0	0	0	0	4	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō
140	5.41	1.00	17	0	0	0	0	3	7	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
150	6.00	0.92	20	0	0	Ő	Ő	Z	1	13	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
100	2.82	0.07	20	0	U A	U N	0	1	2	14	44	U 4	0	Ŭ	Ŭ	U N	U O	v v	U O	0	U	U	0	0	Ű	0	0	0	0	0
180	7 00	0.70	20	ŏ	ň	ň	ň	ň	6	~	10	2	ň	Ň	1	ň	0	Ň	Ň	Ň	Ň	0	0	0	0	Ŭ	Ŭ	Ŭ	Ň.	Ň
190	7.56	1.32	32	ŏ	ŏ	ŏ	ŏ	ŏ	1	4	15	4	ŭ	ŭ	ò	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ŏ	ŏ	ň	ň	ň	ň	ň	ň	ň
200	7.33	1.03	30	Ō	ŏ	ŏ	ō	Õ	1	3	17	ż	6	ō	ō	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
210	7.55	1.23	33	0	0	0	0	0	1	4	16	1	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	Ó
220	7.97	1.20	39	0	0	0	0	0	1	0	18	3	15	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
230	8.26	1.46	38	0	0	0	0	Õ	0	2	12	6	14	3	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
240	8.39	1.34	41	U	Ű	Ű	U	U	U V	5	12	U	20	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö
250	0.47	1 40		ň	ň	ň	ň	ň	ň	'n	4	2	21	4 4	1	Ň	0	ů N	0	1	Ň	0	ů N	0	0	Ň	Ŭ	Ň	Ŭ	0
270	9.65	1.40	37	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	2	1	19	6	8	ő	ő	ň	ň	1	ő	ň	0	ň	ň	ň	ň	ň	ñ	ň
280	9.56	2.10	36	ŏ	ŏ	ō	ŏ	ō	ō	ō	3	3	16	, 9	ž	1	ŏ	ŏ	ŏ	ó	ŏ	ŏ	ŏ	Ĩ	ŏ	ŏ	ŏ	ŏ	ŏ.	ŏ
290	10.84	3.05	38	0	0	0	0	0	0	1	Ō	Ō	16	6	9	Ó	Ō	1	Ō	1	2	Ō	1	1	Ō	Ō	Ō	Ŏ	Õ	Õ
300	10.61	2.45	31	0	0	0	0	0	0	0	1	0	14	- 4	4	2	2	2	1	0	0	0	1	0	0	0	0	0	0	0
310	13.84	4.28	31	0	0	0	0	0	0	0	0	0	2	5	10	Ō	1	1	1	2	1	3	0	1	3	0	1	0	0	0
320	15.11	4.73	36	0	0	0	0	0	0	0	0	0	2	1	10	0	4	2	1	2	4	3	2	0	2	0	1	0	1	1
320	10.13	2.84	26	U 0	0	Ŭ	Ŭ	0	U A	Ň	Ŭ	1	1	2	2	2	1	2	2	2	2	2	1	5	5	1	1	0	0	0
350	16.88	3.44	20	ň	ň	ň	ň	ň	ň	ň	ň			0	1	1	2	ť	1	6	1		2 र	2	1	1	2	0	ň	0
360	17.90	4.39	21	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	1	ŏ	ö	i	1	3	i	1	ż	ĭ	1	ž	4	ò	ō	ž	ŏ	ĭ
370	18.14	3.85	21	0	0	0	0	0	0	0	0	0	0	0	1	2	1	1	1	1	ō	2	Ó	5	4	1	2	Ō	Ō	Ó
380	21.21	3.93	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	1	1	2	0	2	0	2	2
390	19.13	4.26	8	0	0	Ő	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	2	1	0	1	2	0	0	0
400	21.00	2.10	, <u></u>	0	0	0	0	0	0	Ű	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	2	1	0	0	0
410	22.00	2.51	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1	U	U	1	1	2	U	T	U
<b>*</b> 420	22.00	2.37		0.0		0.0		0.0	C	).0		0.0		0.0		0.0		0.0		0.0	.6	567		0.0		1.0		0.0	0	.0
			4.3333		0.0		0.0		).0		0.0		0.0		0.0	•••	0.0	•••	0.0	•••	0.0	, î,	0.0	.6	667	Ĩ.	333	.66	67	••
									_							_					_									
* 430	22.00	2.37		0.0	~ ~	0.0	~ ~	0.0	<u> </u>	0.0		0.0		0.0	• •	0.0		0.0		0.0	.3	533	'	0.0	<u> </u>	1.0		0.0_	0	.0
			2.000/		0.0		0.0	, i	.0		0.0		0.0		0.0		0.0		0.0	1	0.0		0.0	. 5.	555	.0	567	. 3:	-55	
440	22.00	0.00	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
TOTAL	10 47	5 07		0 0		0 0	4	9 0	47		7	1 0	-			<b>.</b> .		7 0	-	<u>د م</u>								2 0	,	•
TUTAL	10.0/	5.05	790 n	0.0	0 0	0.0	2 n'	0.0 27	7 0 2	U 151	1 0	1.0	כ ס 7	ο.υ ς	۲. د ۱	2.U 1	ז ח'	7.0	o n ²	o.u د	1 0	•.U 1/	۱۱ ۵۱	5.U 23	ייניא	U.U 11	ה מ	2.0	: n ^{4,}	.0
			.,,.0		0.0			<u> </u>				.0		,	0.0	'	J.U		7.0	2			v	۷.		13				

170

•••

Table G-4.--Age-length keys for rock sole sampled during the 1990 eastern Bering Sea bottom trawl survey.

MALE KEY

1 FN	AVG	STD.	FRFQ-	AGE	CIN	YFAR	S)														-									
GTH	AGE	DEV.	UENCY	ñ	1	2	ĩτ	4	5	6	7	8	0	10	11	12	13	14	15	16	17	18	10	20	21	22	27	24	25	76+
				•	•	•		-	-	v	•	Ŭ		10	••			.4		10		10	17	LU	-		23	24	23	20+
																				-										
80	3.00	0.00	2	0	0	0	2	Ω	n	٥	0	0	n	٥	n	0	0	٥	n	n	n	Δ	n	n	n	0	Δ	n	n	٥
90	2.67	0.58	ž	ŏ	ŏ	1	2	ň	ŏ	ŏ	ň	ň	ŏ	ň	ŏ	ň	ŏ	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
100	3.00	0.00	Ĩ.	ŏ	ō	Ó	2	ň	ň	õ	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň
110	3.13	0.35	Ŕ	ō	ō	ŏ	7	1	ŏ	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ŏ	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň
120	3.44	0.53	ō	ō	ŏ	ō	Ś	i.	ñ	ñ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
130	3.71	0.49	7	ŏ	ŏ	ō	2	5	ň	ŏ	ň	ň	ŏ	ň	ň	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
140	4.00	0.00	6	ň	ň	ŏ	ō	á	ň	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ŏ	ň	ň	ŏ	ň	ň	ň
150	3.91	0.30	11	ŏ	ŏ	ŏ	ĭ	10	ň	ň	ň	ň	ŏ	ň	ň	ň	ň	ŏ	ň	ŏ	ň	ň	ň	ň	ň	ŏ	ŏ	ň	ň	ň
160	4.33	0.50		ŏ	ŏ	ŏ	Ó	. 6	ž	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ŏ	ň	ŏ	ň	Ň	ň	ň
170	4.46	0.66	13	ŏ	ō	ŏ	1	5	7	õ	ō	ō	ŏ	ō	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ň	ň
180	4.50	0.52	12	ŏ	ō	ŏ	ò	6	6	ō	ō	ō	ŏ	ō	ō	ŏ	ň	ŏ	ň	ō	ŏ	ň	ň	ō	ō	ō	ň	ň	ň	ň
190	4.73	0.65	11	ō	ō	ō	ŏ	ž	6	Ĩ	õ	ō	ō	ō	ō	ō	ň	ŏ	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
200	4.75	0.62	12	ŏ	ō	ō	ŏ	i	7	i	õ	ō	ō	ō	ŏ	ŏ	ō	ŏ	ň	ŏ	ō	ň	ň	ō	ŏ	ň	ň	ň	ň	ň
210	5.55	0.82	11	ŏ	ŏ	ŏ	ŏ	i	Ĺ.	Ś	1	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ň	ŏ	ň	ň
220	5.73	0.79	11	õ	ŏ	Õ	Ō	Ó	5	4	ż	ŏ	ŏ	ō	ō	ō	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
230	5.83	0.58	12	Ō	Ō	Ō	Ō	Õ	3	8	1	Õ	ŏ	Ō	Õ	ō	ō	ō	ō	ŏ	ō	ō	ŏ	ō	ō	ō	ō	ŏ	ŏ	ŏ
240	6.20	0.79	10	Ō	Ō	Ō	Ō	Ŏ	Ž	- Ă	Å.	Ō	Ō	Õ	Õ	ŏ	ō	ŏ	ŏ	ō	ō	ō	ō	ō	ō	ō	Ō	ō	ō	. Ō
250	6.64	0.50	11	Ō	Ō	Ō	Ō	Ō	Õ	4	7	Ō	Õ	Õ	Õ	Õ	Ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ŏ	ō	ō	ō	ō
260	6.69	0.48	13	0	0	0	0	0	0	4	9	0	0	Ó	0	Ó	Ó	Ō	Ó	Ó	Ó	Ó	Ó	Ō	Ō	Ō	Ō	Ő	Ŏ	Ŏ
270	6.82	0.40	) 11	Ō	Ō	Ō	Ō	Ō	Ō	Ż	ġ	Õ	Õ	Ō	Õ	Ŏ	Ō	Ō	Ō	Ō	Ō	ŏ	ŏ	ō	ŏ	ŏ	ō	ŏ	ŏ	ŏ
280	7.90	1.29	> 10	0	0	0	0	0	0	Ó	6	1	1	2	Ó	Ō	Ó	Ō	Ó	Ō	Ō	Ō	Ō	Ō	Ŏ	Ō	Ō	Ŏ	Ō	Ō
290	9.25	3.65	i 12	0	0	0	0	0	0	0	5	1	3	1	1	Ó	Ó	Ō	Ō	Ō	Ō	Ó	Ŏ	1	Õ	Ō	Ō	Ŏ	Ō	ŏ
300	9.27	1.19	) 11	0	0	0	0	0	0	0	1	2	2	5	1	Ö	Ō	Ō	0	0	0	0	0	Ó	Ō	Ō	Ō	Ō	Ō	Ō
310	9.58	2.71	12	0	0	0	0	0	0	0	4	0	4	1	0	0	2	0	1	0	0	0	0	0	0	0	Ó	0	Ó	0
320	9.57	1.62	27	0	0	0	0	0	0	0	1	0	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
330	10.78	3.15	; 9	0	0	0	0	0	0	0	1	2	2	0	0	0	1	2	1	0	0	0	Ó	Ó	Ó	0	0	Ō	Ó	Ó
340	10.40	3.21	5	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
350	10.20	0.45	i 5	0	0	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
* 360	11.71	4.04	•	0.0		0.0		0.0	1	0.0		0.0		2.0		0.0		0.0		0.0		0.0		0.5		0.0		0.0		0.0
			3.5		0.0		0.0	1	0.0		0.0		0.0		1.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
																										-				
370	15.50	6.36	5 Z	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
380	21.00	0.00	) 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
TOTAL	6.43	3.01		0.0		1.0	5	2.0	33	3.0		7.0	1	7.0		2.0		2.0		0.0		0.0		2.5		0.0		0.0		0.0
			263.5		0.0	2	4.0	4	3.0	5	2.0	1	5.0		6.0		3.0		3.0		0.0		0.0		1.0		0.0		0.0	

FEMALE KEY

, ¹.

,

LEN	AVC	STD	EDEO.	ACE	( 1 N	VEA	Del												-				_				-			·
GTH	AGE	DEV.	LIENCY		1	2	τ3) τ	6	5		7	A	0	10	11	12	17	1/	15	14	17	10	10	70	-		27	7/	25	×.
			ULIIUI											10						10	17	10	19	20	21	22	23	24	25	201
90	3.00	0.00	3	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	
100	2.75	0.50	4	0	Ó	1	3	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Õ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	č
110	3.00	0.00	4	0	0	0	4	0	0	0	0	0	0	Ó	Ó	Ō	Ö	Ö	Ō	Õ	Ő	Õ	ŏ	ō	ō	ŏ	ō	ŏ	ō	ē
120	3.17	0.41	6	0	0	0	5	1	0	0	0	0	0	0	0	0	0	0	0	0	Ó	Õ	Ō	Ō	Ō	Ō	Ō	Õ	Õ	Ō
130	3.60	0.52	10	0	0	0	- 4	6	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	Ō	Ó	Ō	Ō	Ō	Ō	Ō	Ō
140	4.13	0.35	8	0	0	0	0	7	1	0	0	0	0	0	0	0	0	0	0	0	0	Ō	Ō	Ō	Ō	Ō	Õ	Ō	Õ	Ō
150	4.00	0.00	11	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
160	4.27	0.47	11	0	0	0	0	8	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
170	4.27	0.47	' 11	0	0	0	0	8	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
180	4.42	0.51	12	0	0	0	0	7	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
190	4.92	0.67	12	0	0	0	0	3	<u> </u>	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	5.27	0.79	11	0	0	0	0	1	7	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
210	5.25	0.45	12	Ŭ	Ű	U	0	0	Ŷ	5	0	U	0	0	0	0	0	0	0	0	0	0	0	0	Ō	Ō	0	0	0	0
220	5.30	0.71	10	Ŭ	Ű	U	Ŭ	1	9	5		Ŭ	0	Ŭ	U	Ŭ	U	0	0	0	Ő	0	0	0	0	0	0	0	0	0
230	5.00	0.04	10	Ŭ,	0	Ŭ	Ŭ		2	2		v v	0	U N	U	v v	U N	U	Ŭ	Ŭ	Ű	0	Ű	U	0	Ű	Ű	0	0	0
240	5 01	0.04	11	Ň		0	0	Ň	2	2		Ŭ	Ň	U N	U A	U N	0	U 0	U	Ŭ	Ű	0	Ŭ	0	U	U	Ŭ	0	U	0
260	6 50	0.03	10	ň	. U	ň	Ň	ň	- 1	- 7	2	Ň	Ň	ň	0	0	0	0	Ň	Ň	Ŭ	ů.	Ň	0	Ň	v v	U V	U N	U	U
270	7.00	0.71	10	ŏ	ň	ň	ň	ň	ġ	7	5	1	1	ň	ň	ň	ň	ň	0	0	Ň	Ň	0	0	Ň	0	Ň	0	Ň	0
280	7.33	0.89	12	ŏ	ň	ŏ	ŏ	ň	ň	2	ś	ż	i	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň		ň	0
290	7.55	0.82	11	ŏ	ŏ	ō	ŏ	ŏ	ň	1	- Ā	ŝ	i	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
300	7.77	1.92	13	ŏ	Ō	Ō	Ō	Ō	ō	ż	5	1	ż	ŏ	ŏ	ō	ī	ŏ	ō	ŏ	ŏ	ŏ	ň	ň	ŏ	ň	ň	ň	ň	ŏ
310	7.45	0.69	11	Ō	Õ	Ō	Ō	Ō	Ō	Õ	7	3	1	ŏ	ŏ	ŏ	ò	ō	ŏ	ň	ŏ	õ	ŏ	ŏ	ň	ň	ň	ň	ň	ŏ
320	7.91	0.83	11	ŏ	ŏ	ŏ	ō	Ō	ō	ŏ	4	4	ż	ō	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
330	8.64	1.21	11	0	0	0	0	0	0	0	1	6	1	2	Ť	Ō	Ó	Ó	Ō	Ō	Ŏ	Õ	Ō	Ō	Ō	ō	ō	ŏ	Õ	ō
340	9.09	0.70	11	0	0	0	0	0	0	0	0	2	6	3	0	0	Ó	Ó	Ó	0	Ó	Ó	Ō	Ō	Ō	Õ	Õ	Õ	Õ	Ō
350	9.36	1.45	14	0	0	0	0	0	0	0	1	2	7	1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
360	10.00	1.29	13	0	0	0	0	0	0	0	0	0	6	4	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
370	9.90	0.74	10	0	0	0	0	0	0	0	0	0	3	5	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
380	10.91	2.02	11	0	0	0	0	0	0	0	0	1	1	3	4	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
390	12.22	5.15	9	0	0	0	0	0	0	0	0	<b>O</b>	0	3	2	1	2	0	0	0	Q	0	0	1	0	0	0	0	0	0
400	14.22	4.21		0	0	0	0	0	0	0	0	0	0	0	1	Z	3	1	1	0	0	0	0	0	0	0	0	0	1	0
410	14.0/	4.27	Ŷ	U U	Ŭ	0	U C	U	U	Ű	U	0	Ű	Ū.	3	1	0	0	3	0	0	1	0	0	0	0	0	1	0	0
420	10.00	0.30	2	U A	Ŭ	0	Ŭ	U	Ű	Ŭ	Ŭ	Ŭ	Ű	1	U I	0	1	0	1	0	0	0	0	1	0	0	0	0	0	1
430	12.33	3.44	°,	U A	0	0	0	U O	0	0	0	0	U	U	1	1	U	U	1	1	U	1	0	1	0	Ő	0	0	0	0
440	20 50	J./0 0 71	2	U 0	0	0	U n	0	0	0	0	0	0	ů	0			Ŭ	Ŭ	U	Ŭ	2	U	U		U.	U	U	Ŭ	0 0
4.50	10 25	2 87	2 /.	0	0	0	0 0	0	0	0	0	ň	0	0	ň	0	0	0	1	U A	U N	0	U A		1	Ŭ	U	U	Ŭ	Ű
400	20 00	0.00	4	0	0	0	ň	0	0	0	0	0	0	Ů	0	Ň	U 0	0		U	0	U	U	1	2	U	U	v	U	U
480	20.00	0.00	1	ň	ň	ň	ň	ň	ň	ň	ň	ň	0	ň	ň	ň	0	0	0	0	Ň	0	U A		Ň	Ň	0	U N	ů,	0
	20.00	5.00	1	5	0	J	J	v	. "	U	v	v	0	U	U	v	U,	U	U	U	U	U	U	I	U	U	V	v	U	U
DTAL	7.77	4.14	358	0	0	1	19	53	52	39	46	29	34	22	16	0	9	2	8	1	0	4	0	7	4	Ω	n	1	1	1

5		-
2 2		-
5	••••••••••••••••••••••••••••••••••	-
2		0
8		0
⊼	00000000000000000000000000000000000000	ŝ
20	00000000000000000000000000000000000000	0
₽	••••••••••••••••••••••••••••••••••••	0
18		4
1		0
2	•••••••••••••••••••••••••••••••••••	-
15	00000000000000000000000000000000000000	:
14	00000000000000000000000000000000000000	4
13	00000000000000000000000000000000000000	12
12	00000000000000000000000000000000000000	11
=	000000000000000000000000000000000000000	21
2	00000000000000000000000000000000000000	37
0	000000000000000000000000000000000000000	49
80	00000000000000000000000000000000000000	36
~	00000000000000000000000000000000000000	98
•	000000000mmar#1arrnutm000000000000000000000000000000000000	22
<b>~</b>	000000-040555456004-00000000000000000000	95
4	000	111
^m	N954590-9-9999999999999999999999999999999	20
rears 2	-m-00000000000000000000000000000000000	ŝ
NIC -		o
AGE (	••••••••••••••••••••••••••••••••••••••	0
FREQ - Jency	<b>womゎpoゃぷぬぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷぷ</b>	634
e 2	866852585558565555555555555555555555555	۶.
		M N
AVG	<u> </u>	7.0
H	8262626262688822882682828282828288888888	TAL
<b>[</b> ]		2

SEXES COMBINED

#### APPENDIX H

Population Estimates by Age for Principal Fish Species

Appendix H presents population estimates and mean lengths at age by sex and for sexes combined. Population estimates listed as "below minimum key length" and "above maximum key length" refer to fish lengths that lack age observations. Asterisks indicate ages affected by the linear interpolation used to assign age distributions to length classes (in the age-length key) not represented by collected age data.

#### List of Tables

<u>Table</u>	<u>I</u>	Page
H-l.	Walleye pollock	175
Н−2.	Pacific cod	179
Н−3.	Yellowfin sole	183
H-4.	Rock sole	187

Table H-1.--Population estimates of walleye pollock by age (years), derived from data collected during the 1990 eastern Bering Sea bottom trawl survey. Mean lengths are presented in millimeters.

MALES

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
BELOW MINIMUM						
KEY LENGTH	8,864,921	0.0016	8,864,921	0.0016	120.28	12.11
1	7,793,048	0.0014	16,657,968	0.0030	176.73	19.40
2	110,947,429	0.0202	127,605,397	0.0232	261.19	24.73
3	43,498,540	0.0079	171.103.937	0.0312	290.05	22.42
4	312,609,855	0.0569	483,713,792	0.0881	395.19	33.59
5	717,453,931	0.1306	1,201,167,723	0.2187	433.97	24.93
6	2,166,869,297	0.3945	3,368,037,020	0.6132	448.13	26.99
7	492,410,363	0.0897	3,860,447,383	0.7029	455.69	39.22
8	996,952,039	0.1815	4,857,399,422	0.8844	479.97	33.03
9	105,025,275	0.0191	4,962,424,697	0.9035	493.35	46.40
10	194,830,424	0.0355	5,157,255,121	0.9390	539.31	30.78
11	39,873,739	0.0073	5,197,128,860	0.9463	547.65	25.87
* 12	234,740,226	0.0427	5,431,869,086	0.9890	554.17	46.73
13	18,569,742	0.0034	5,450,438,828	0.9924	576.49	37.27
* 14	19,761,103	0.0036	5,470,199,931	0.9960	574.78	56.92
* 15	15,897,641	0.0029	5,486,097,572	0.9989	527.31	64.13
* 16	4,123,303	0.0008	5,490,220,875	0.9996	668.05	35.38
18	1,907,956	0.0003	5,492,128,830	1.0000	644.14	4.93
ABOVE MAXIMUM						
KEY LENGTH	124,969	0.0000	5,492,253,800	1.0000	797.39	4.39
TOTAL	5,492,253,800	1.0000	5,492,253,800	1.0000	454.50	59.79

# FEMALES

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
BELOW MINIMUM						
KEY LENGTH	13,745,468	0.0029	13,745,468	0.0029	133.04	14.68
1	17,894,440	0.0038	31,639,908	0.0067	177.13	14.50
* 2	124,525,396	0.0265	156, 165, 304	0.0333	252.50	21.94
* 3	33,059,499	0.0070	189,224,803	0.0403	304.51	53.14
* 4	259,430,341	0.0553	448,655,145	0.0956	393.63	27.42
5	446,816,209	0.0952	895.471.354	0.1908	433.55	28.14
6	1,768,570,586	0.3769	2,664,041,939	0.5677	457.83	29.83
7	303,306,115	0.0646	2,967,348,055	0.6323	473.47	28.78
8	1,003,508,989	0.2139	3,970,857,044	0.8462	498.06	34.71
9	101,716,588	0.0217	4,072,573,632	0.8679	515.69	42.40
10	193,564,624	0.0412	4,266,138,256	0.9091	567.69	39.07
11	20,294,895	0.0043	4,286,433,151	0.9135	576.84	59.69
* 12	331,391,773	0.0706	4,617,824,923	0.9841	579.90	58.05
· 13	29,474,285	0.0063	4,647,299,208	0.9904	543.56	73.81
* 14	17,668,486	0.0038	4,664,967,694	0.9941	612.20	68.96
* 15	12,958,682	0.0028	4,677,926,375	0.9969	642.25	43.49
16	1,619,182	0.0003	4,679,545,558	0.9972	737.04	25.12
18	7,034,470	0.0015	4,686,580,028	0.9987	614.47	52.21
22	5,068,435	0.0011	4,691,648,463	0.9998	560.00	0.00
ABOVE MAXIMUM						
KEY LENGTH	924,859	0.0002	4,692,573,321	1.0000	808.57	9.77
TOTAL	4,692,573,321	1.0000	4,692,573,321	1.0000	470.09	74.95
### Table H-1.--Continued.

•

#### UNSEXED

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN Length	STD. DEV. OF LENGTH
BELOW MINIMUM KEY LENGTH	786,070	0.0005	786,070	0.0005	69.01	4.34
1 2 3	1,483,244,336 16,130,114 1,212,722	0.9879 0.0107 0.0008	1,484,030,405 1,500,160,519 1,501,373,241	0.9884 0.9992 1.0000	127.61 200.29 216.22	24.57 25.45 9.54
TOTAL	1,501,373,241	1.0000	1,501,373,241	1.0000	128.43	25.84

### Table H-1.--Continued.

#### MALES, FEMALES, AND UNSEXED

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN Length	STD. DEV. OF LENGTH
BELOW MINIMUM						
KEY LENGTH	23,396,458	0.0020	23,396,458	0.0020	126.05	18.26
1	1,508,931,824	0.1291	1.532.328.282	0.1311	128,45	25,27
* 2	251,602,938	0.0215	1,783,931,220	0.1527	252.99	27.52
* 3	77,770,761	0.0067	1,861,701,981	0.1593	295.04	40.40
* 4,	572,040,196	0.0490	2,433,742,178	0.2083	394.49	30.95
5	1,164,270,140	0.0996	3,598,012,318	0.3079	433.81	26.21
6	3,935,439,882	0.3368	7,533,452,200	0.6446	452.49	28.71
7	795,716,478	0.0681	8,329,168,678	0.7127	462.47	36.64
8	2,000,461,028	0.1712	10,329,629,707	0.8839	489.04	35.07
9	206,741,864	0.0177	10,536,371,570	0.9016	504.34	45.85
10	388,395,048	0.0332	10,924,766,618	0.9348	553.46	37.91
11	60,168,634	0.0051	10,984,935,252	0.9400	557.50	42.84
* 12	566,131,998	0.0484	11,551,067,250	0.9884	569.23	55.12
13	48,044,026	0.0041	11,599,111,277	0.9925	556.29	64.32
* 14	37,429,589	0.0032	11,636,540,865	0.9958	592.44	65.61
* 15	28,856,323	0.0025	11,665,397,188	0.9982	578.92	79.90
* 16	5,742,485	0.0005	11,671,139,673	0.9987	687.50	45.17
18	8,942,426	0.0008	11,680,082,099	0.9995	620.80	47.93
22	5,068,435	0.0004	11,685,150,534	0.9999	560.00	0.00
ABOVE MAXIMUM						
KEY LENGTH	1,049,828	0.0001	11,686,200,362	1.0000	807.24	9.98
TOTAL	11,686,200,362	1.0000	11,686,200,362	1.0000	418.87	128.49

.

Table H-2.--Population estimates of Pacific cod by age (years), derived from data collected during the 1990 eastern Bering Sea bottom trawl survey. Mean lengths are presented in millimeters.

MALES
-------

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
BELOW MINIMUM						
KEY LENGTH	987,093	0.0052	987,093	0.0052	107.41	5.49
1	40,621,366	0.2146	41,608,460	0.2199	162.28	24.32
2	32.076.749	0.1695	73.685.209	0.3893	264.00	54.28
3	32,931,725	0.1740	106,616,934	0.5633	348.88	35.43
4	18.887.244	0.0998	125,504,178	0.6631	471.01	40.99
5	19,247,905	0.1017	144,752,083	0.7648	567.43	27.73
6	24,380,566	0.1288	169,132,649	0.8937	642.92	31.03
7	13.233.212	0.0699	182,365,861	0.9636	729.06	35.51
8	4,720,290	0.0249	187,086,150	0.9885	832.62	34.52
9	575,923	0.0030	187,662,073	0.9916	841.57	55.70
* 10	300,568	0.0016	187,962,641	0.9932	949.58	7.39
12	426,338	0.0023	188,388,979	0.9954	890.00	0.00
* 14	385,228	0.0020	188,774,207	0.9975	941.46	40.16
BETWEEN KEY						
LENGTHS	463,976	0.0025	189,238,183	0.9999	909.03	. 6.78
ABOVE MAXIMUM						
KEY LENGTH	17,501	0.0001	189,255,684	1.0000	980.00	0.00
TOTAL	189,255,684	1.0000	189,255,684	1.0000	410.44	208.51

### Table H-2.--Continued.

### **FEMALES**

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
BELOW MINIMUM						
KEY LENGTH	377,299	0.0019	377,299	0.0019	97.74	4.18
* 1	36,858,654	0.1881	37,235,953	0,1901	160.90	23.21
* 2	25,505,235	0.1302	62,741,189	0.3202	264.42	49.09
3	34,795,213	0.1776	97.536.402	0.4978	350.23	34.44
4	16,357,446	0.0835	113.893.847	0.5813	458.69	41.47
5	21,839,330	0.1115	135,733,177	0.6928	569.71	34.48
6	24,656,418	0.1258	160, 389, 595	0.8186	645.06	33.22
7	19,031,143	0.0971	179,420,737	0.9158	739.36	32.45
* 8	11,832,454	0.0604	191,253,191	0.9761	827.23	36.03
* 9	1,713,608	0.0087	192,966,799	0.9849	910.43	32.00
10	326,040	0.0017	193,292,839	0.9866	800.00	0.00
13	31,418	0.0002	193,324,257	0.9867	1030.00	0.00
* 14	128,912	0.0007	193,453,169	0.9874	901.69	3.75
BETWEEN KEY						
LENGTHS	2,278,353	0.0116	195,731,521	0.9990	978.07	27.06
ABOVE MAXIMUM						
KEY LENGTH	195,401	0.0010	195,926,922	1.0000	1057.69	7.14
TOTAL	195,926,922	1.0000	195,926,922	1.0000	454.31	228.93

.

. .

#### Table H-2.--Continued.

.

#### UNSEXED

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
BELOW MINIMUM KEY LENGTH	6,880,013	0.1391	6,880,013	0.1391	97.30	4.44
1 2	41,386,781 1,206,495	0.8365 0.0244	48,266,794 49,473,289	0.9756 1.0000	137.61 190.20	21.18 25.50
TOTAL	49,473,289	1.0000	49,473,289	1.0000	133.29	25.86

.

#### Table H-2. --Continued.

# MALES, FEMALES, AND UNSEXED

AGE	CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
BELOW	MINIMUM						
KEY LE	NGTH	8,244,405	0.0190	8,244,405	0.0190	98.53	5.62
*	1	118,866,802	0.2735	127.111.207	0.2924	153.26	25.62
*	2	58, 788, 479	0.1353	185,899,686	0.4277	262.67	52.69
	3	67,726,938	0.1558	253,626,625	0.5835	349.58	34.93
	4	35,244,690	0.0811	288,871,315	0.6646	465.29	41.67
	5	41,087,235	0.0945	329,958,549	0.7591	568.64	31.52
	6	49,036,984	0.1128	378,995,533	0.8719	644.00	32.17
	8 7	32, 264, 355	0.0742	411.259.888	0.9462	735.14	34.12
*	8	16.552.744	0.0381	427.812.631	0.9843	828.77	35.69
*	9	2,289,531	0.0053	430,102,162	0.9895	893.11	49.39
* 1	0	626,608	0.0014	430,728,770	0.9910	871.75	74.90
ī	2	426.338	0.0010	431, 155, 108	0.9919	890.00	0.00
ī	3	31,418	0.0001	431, 186, 526	0.9920	1030.00	0.00
* 1	4	514,139	0.0012	431,700,665	0.9932	931.49	38.85
RETWEE	ΝΚΕΥ						
LENGTH	S	2,742,329	0.0063	434,442,994	0.9995	966.39	35.87
ABOVE	MAXIMUM						
KEY LE	NGTH	212,901	0.0005	434,655,895	1.0000	1051.31	22.41
TOTAL		434,655,895	1.0000	434,655,895	1.0000	398.67	228.26

4.1

. .

Table H-3.--Population estimates of yellowfin sole by age (years), derived from data collected during the 1990 eastern Bering Sea bottom trawl survey. Mean lengths are presented in millimeters.

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
BELOW MINIMUM						
KEY LENGTH	10,043,208	0.0025	10,043,208	0.0025	97.54	4.30
3	10,466,555	0.0026	20,509,762	0.0052	115.51	4.97
4	47,085,724	0.0119	67.595.486	0.0171	127.05	9.75
5	119,990,787	0.0303	187,586,273	0.0473	159.87	29.36
6	315,410,671	0.0796	502,996,944	0.1269	180.79	27.48
7	886,071,075	0.2236	1,389,068,020	0.3505	208.20	29.32
8	194,902,641	0.0492	1,583,970,660	0.3997	222.01	39.86
9	1,146,440,486	0.2893	2,730,411,147	0.6890	250.95	28.88
* 10	318,975,498	0.0805	3,049,386,645	0.7695	261.15	34.70
11	265,382,225	0.0670	3,314,768,870	0.8364	290.00	31.09
12	40,248,557	0.0102	3,355,017,427	0.8466	306.20	12.15
13	65,825,422	0.0166	3,420,842,848	0.8632	311.61	12.24
14	67,558,650	0.0170	3,488,401,499	0.8802	307.23	15.45
15	24,283,836	0.0061	3,512,685,335	0.8864	310.28	14.24
16	55,075,892	0.0139	3,567,761,226	0.9003	294.47	32.22
17	73,566,207	0.0186	3,641,327,434	0.9188	313.67	19.45
18	99,139,417	0.0250	3,740,466,850	0.9438	314.97	8.24
19	62,220,835	0.0157	3,802,687,685	0.9595	312.33	17.91
* 20	47,132,216	0.0119	3,849,819,901	0.9714	312.41	21.23
21	48,757,789	0.0123	3,898,577,690	0.9837	318.85	8.86
23	40,759,984	0.0103	3,939,337,674	0.9940	318.78	11.74
24	3,951,744	0.0010	3,943,289,418	0.9950	360.00	0.00
25	9,858,589	0.0025	3,953,148,007	0.9975	320.00	0.00
29	9,858,589	0.0025	3,963,006,597	1.0000	320.00	0.00
TOTAL	3,963,006,597	1.0000	3,963,006,597	1.0000	242.78	53.35

#### Table H-3.--Continued.

#### FEMALES

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
BELOW MINIMUM						
KEY LENGTH	8,093,031	0.0016	8,093,031	0.0016	96.19	5.58
4	68,958,690	0.0135	77.051.721	0.0151	135.65	17.40
5	100.631.374	0.0197	177.683.095	0.0349	155.25	32.60
6	322.306.429	0.0633	499,989,524	0.0981	183.62	35.85
7	1,061,541,700	0.2083	1,561,531,224	0.3064	209.48	30.68
8	191,750,591	0.0376	1,753,281,815	0.3441	225.86	30.37
9	1,254,943,975	0.2463	3,008,225,790	0.5903	259.07	32.87
10	407,612,043	0.0800	3,415,837,833	0.6703	276.62	35.30
11	481,278,692	0.0944	3,897,116,525	0.7648	301.74	26.05
12	101,436,564	0.0199	3,998,553,088	0.7847	334.66	24.41
13	71,838,311	0.0141	4,070,391,400	0.7988	334.86	18.49
14	107,383,878	0.0211	4,177,775,277	0.8199	326.78	39.64
15	78,163,078	0.0153	4,255,938,355	0.8352	334.03	17.04
16	231,139,899	0.0454	4,487,078,254	0.8806	337.96	15.56
17	126,717,075	0.0249	4,613,795,329	0.9054	335.99	19.63
* 18	45,470,383	0.0089	4,659,265,712	0.9143	340.50	23.42
19	66,927,279	0.0131	4,726,192,991	0.9275	350.93	15.25
20	114,369,315	0.0224	4,840,562,306	0.9499	340.36	27.67
* 21	116,480,690	0.0229	4,957,042,996	0.9728	343.92	26.55
* 22	36,201,595	0.0071	4,993,244,591	0.9799	354.65	27.67
* 23	74,688,998	0.0147	5,067,933,589	0.9945	354.95	22.91
24	6,502,216	0.0013	5,074,435,805	0.9958	360.00	0.00
* 25	8,054,057	0.0016	5,082,489,861	0.9974	386.05	13.60
26	9,834,835	0.0019	5,092,324,697	0.9993	366.78	9.47
28	3,332,620	0.0007	5,095,657,317	1.0000	380.00	0.00
ABOVE MAXIMUM		_		_		
KEY LENGTH	86,317	0.0000	5,095,743,634	1.0000	450.00	0.00
TOTAL	5,095,743,634	1.0000	5,095,743,634	1.0000	263.22	63.34

### Table H-3.--Continued.

#### UNSEXED

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE	MEAN	STD. DEV. OF LENGTH
BELOW MINIMUM KEY LENGTH	275,425	0.2222	275,425	0.2222	100.00	0.00
3 4 5	221,870 504,946 237,172	0.1790 0.4074 0.1914	497,295 1,002,242 1,239,413	0.4012 0.8086 1.0000	110.69 111.82 111.29	2.53 3.86 3.35
TOTAL	1,239,413	1.0000	1,239,413	1.0000	108.89	5.67

_____ /

### Table H-3.--Continued.

 $A_{i} = 0$ 

# MALES, FEMALES, AND UNSEXED

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN Length	STD. DEV. OF LENGTH
BELOW MINIMUM						
KEY LENGTH	18,411,664	0.0020	18,411,664	0.0020	96.99	4.94
3	10,688,425	0.0012	29,100,089	0.0032	115.41	4.98
4	116,549,360	0.0129	145,649,448	0.0161	132.07	15 40
5	220,859,333	0.0244	366,508,781	0.0405	157.71	30 98
6	637,717,101	0.0704	1.004.225.882	0.1108	182.22	32.01
7	1,947,612,775	0.2150	2.951.838.657	0.3258	208.90	30.08
8	386,653,232	0.0427	3,338,491,889	0.3685	223.92	35.53
9	2,401,384,461	0.2651	5,739,876,350	0.6335	255.19	31.29
* 10	726,587,541	0.0802	6,466,463,891	0.7137	269.83	35.87
11	746,660,917	0.0824	7.213.124.808	0.7962	297.57	28.51
12	141,685,120	0.0156	7.354.809.928	0.8118	326.58	25.16
13	137,663,733	0.0152	7,492,473,661	0.8270	323.74	19.62
14	174,942,528	0.0193	7,667,416,189	0.8463	319.23	33.87
15	102,446,914	0.0113	7,769,863,103	0.8576	328.40	19.28
16	286,215,791	0.0316	8,056,078,894	0.8892	329.59	26.25
17	200,283,282	0.0221	8,256,362,176	0.9113	327.79	22.33
* 18	144,609,799	0.0160	8,400,971,975	0.9273	323.00	18.96
19	129,148,114	0.0143	8,530,120,089	0.9415	332.33	25.44
* 20	161,501,531	0.0178	8,691,621,620	0.9593	332.20	28.90
* 21	165,238,480	0.0182	8,856,860,100	0.9776	336.52	25.51
* 22	36,201,595	0.0040	8,893,061,694	0.9816	354.65	27.67
* 23	115,448,982	0.0127	9.008.510.676	0.9943	342.18	26.21
24	10,453,960	0.0012	9.018.964.636	0,9955	360.00	0.00
* 25	17,912,646	0.0020	9.036.877.282	0.9974	349.70	34.10
26	9,834,835	0.0011	9.046.712.118	0.9985	366.78	9.47
28	3,332,620	0.0004	9.050.044.737	0.9989	380.00	0.00
29	9,858,589	0.0011	9,059,903,327	1.0000	320.00	0.00
ABOVE MAXIMUM						
KEY LENGTH	86,317	0.0000	9,059,989,643	1.0000	450.00	0.00
TOTAL	9,059,989,643	1.0000	9,059,989,643	1.0000	254.26	60.06

, **.** 

Table H-4.--Population estimates of rock sole by age (years), derived from data collected during the 1990 eastern Bering Sea bottom trawl survey. Mean lengths are presented in millimeters.

MALES
-------

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
BELOW MINIMUM						
KEY LENGTH	1,195,758	0.0003	1,195,758	0.0003	70.00	0.00
2	7,695,371	0.0017	8,891,129	0.0019	90.00	0.00
3	597.392.876	0.1291	606,284,005	0.1310	117.48	16.99
4	1,581,459,792	0.3418	2,187,743,796	0.4729	152.31	22.41
5	829,477,882	0.1793	3,017,221,678	0.6522	189.08	21.75
6	433,439,927	0.0937	3,450,661,605	0.7458	230.73	20.75
7	640,937,539	0.1385	4,091,599,144	0.8844	268.01	25.36
8	72,433,264	0.0157	4,164,032,408	0.9000	299.12	17.14
9	175,887,600	0.0380	4,339,920,008	0.9381	303.89	14.05
* 10	155,161,123	0.0335	4,495,081,131	0.9716	300.28	16.76
* 11	44,914,881	0.0097	4,539,996,012	0.9813	307.48	19.99
12	15,971,900	0.0035	4,555,967,912	0.9848	324.53	8.37
13	25,530,379	0.0055	4,581,498,291	0.9903	313.33	7.45
14	8,494,281	0.0018	4,589,992,573	0.9921	330.00	0.00
15	18,505,558	0.0040	4,608,498,130	0.9961	320.45	12.59
* 20	15,792,645	0.0034	4,624,290,775	0.9995	300.32	26.59
21	607,157	0.0001	4,624,897,933	0.9997	380.00	0.00
ABOVE MAXIMUM						
KEY LENGTH	1,605,893	0.0003	4,626,503,826	1.0000	407.72	10.40
TOTAL	4,626,503,826	1.0000	4,626,503,826	1.0000	195.29	64.36

187

# Table H-4. --Continued.

### **FEMALES**

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
BELOW MINIMUM						
KEY LENGTH	1,146,245	0.0003	1,146,245	0.0003	80.00	0.00
2	11 018 836	0 0026	12 165 081	0.0029	100.00	0.00
2	369 101 300	0.0020	380 656 381	0.0892	116 32	10.15
<u>л</u>	1 151 651 07/	0.0004	1 532 308 355	0.0052	157 38	19.15
4	030 006 971	0.2055	2 372 305 225	0.5561	199 02	27 18
5	ABE 778 A15	0.1303	2,372,303,223	0.5301	238 01	28.30
0 7	400,770,415	0.1171	2,000,000,040	0.0702	276 93	31 50
0	402,002,400	0.1131	3 602 706 411	0.7035	309 89	25 40
0	201,100,202	0.0012	3 882 606 965	0 9101	335 43	28.36
10	156 121 600	0.0050	1 038 818 653	0.9467	361 61	19 16
11	DE 171 021	0.0300	A 12A 203 573	0.9407	374 59	22 14
11	00,4/4,921	0.0200	4,124,255,575 A 165 2AO AAA	0.9007	375 07	22.14
12	40,900,071	0.0090	4,103,243,444	0.9705	37/ 05	40 11
13	39,300,411	0.0092	4,204,010,000	0.9050	399 10	90.11
14	9,213,012	0.0022	4,213,020,007	0.3077	103 60	16.92
15	21,007,002	0.0051	4,235,490,529	0.9920	403.09	10.03
16	1,095,824	0.0003	4,230,392,332	0.0040	430.00	12 04
18	7,627,262	0.0018	4,244,219,010	0.9940	427.10	13.04
20	9,454,853	0.0022	4,253,074,408	0.9971	410.95	24.30
21	3,295,654	8000.0	4,250,970,122	0.9978	440.97	8.42
24	2,893,776	0.0007	4,259,863,898	0.9985	410.00	0.00
25	3,730,680	0.0009	4,263,594,577	0.9994	400.00	0.00
26	2,267,366	0.0005	4,265,861,944	0.9999	420.00	0.00
ABOVE MAXIMUM						
KEY LENGTH	391,057	0.0001	4,266,253,001	1.0000	490.00	0.00
TOTAL	4,266,253,001	1.0000	4,266,253,001	1.0000	225.17	81.58

 $(x_{i}) \in \mathcal{X}_{i}$ 

. .

### Table H-4. - - Continued.

#### UNSEXED

AGE CLASS	NUMBER	PROPORTION	CUMULATIVE NUMBER	CUMULATIVE PROPORTION	MEAN Length	STD. DEV. OF LENGTH
BELOW MINIMUM KEY LENGTH	3,161,410	0.0019	3,161,410	0.0019	67.87	5.82
2 3 4 5 6	91,293,737 1,066,898,813 489,763,356 30,664,265 84,184	0.0543 0.6344 0.2912 0.0182 0.0001	94,455,147 1,161,353,960 1,651,117,316 1,681,781,580 1,681,865,764	0.0562 0.6905 0.9817 0.9999 1.0000	93.10 107.09 134.85 160.80 190.00	6.35 10.91 14.57 13.86 0.00
TOTAL	1,681,865,764	1.0000	1,681,865,764	1.0000	115.33	19.13

...

189

#### Table H-4.--Continued.

.

### MALES, FEMALES, AND UNSEXED

BELOW MINIMUM KEY LENGTH 2						
KEY LENGTH 2	F FA1 417					
2	5,503,413	0.0005	5,503,413	0.0005	70.86	6.49
	110,007,945	0.0104	115,511,358	0.0109	93.58	6.22
3	2.032.782.988	0.1922	2.148.294.346	0.2032	111.82	13.81
4	3,222,875,121	0.3048	5.371.169.467	0.5079	151.47	21.72
5	1.700.139.017	0.1608	7.071.308.484	0.6687	193.48	25.36
6	920.302.526	0.0870	7,991,611,009	0.7557	234.57	25.29
7	1,123,490,028	0.1062	9,115,101,037	0.8620	271.84	28.51
8	333.593.546	0.0315	9,448,694,583	0.8935	307.55	24.26
9	455,788,154	0.0431	9,904,482,737	0.9366	323.26	28.38
* 10	311.282.811	0.0294	10.215.765.548	0.9661	331.04	35.56
* 11	130,389,801	0.0123	10.346.155.350	0.9784	351.47	38.42
12	56.927.771	0.0054	10.403.083.121	0.9838	361.54	33.31
13	64.896.790	0.0061	10.467.979.910	0.9899	350.71	43.64
14	17.707.293	0.0017	10.485.687.204	0.9916	360.23	29.88
15	40,173,220	0.0038	10.525.860.423	0.9954	365.35	44.13
16	1.095.824	0.0001	10,526,956,247	0.9955	430.00	0.00
18	7.627.262	0.0007	10,534,583,509	0.9962	427.18	13.84
* 20	25,247,498	0.0024	10.559.831.007	0,9986	341.75	59.42
21	3,902,812	0.0004	10.563.733.819	0,9990	436.55	25.48
24	2.893.776	0.0003	10.566.627.595	0.9992	410.00	0.00
25	3,730,680	0.0004	10.570.358.274	0.9996	400.00	0.00
26	2,267,366	0.0002	10,572,625,641	0.9998	420.00	0.00
ABOVE MAXIMUM						
KEY LENGTH	1,996,951	0.0002	10,574,622,591	1.0000	423.83	33.96
TOTAL 10	0,574,622,591	1.0000	10,574,622,591	1.0000	194.63	77.02